Cell and Tissue Research

, Volume 233, Issue 2, pp 415–426 | Cite as

Immunocytochemical identification of α-endorphin-like material in neurones of the brain and corpus cardiacum of the blowfly, Calliphora vomitoria (Diptera)

  • Hanne Duve
  • Alan Thorpe
Article

Summary

A group of the 24–26 paraldehyde fuchsin-positive median neurosecretory cells (MNC) in the pars intercerebralis of the brain of the blowfly, Calliphora vomitoria, has shown immunoreactivity towards three different antibodies to α-endorphin, a peptide that corresponds to the amino acid sequence present between residues 61 and 76 of the precursor molecule, β-lipotropin (β-LPH). The immunoreactive material could be followed in axons within the median bundle, the tract through which neurosecretory material from the MNC is passed down to the corpus cardiacum (CC). The α-endorphin-immunoreactive material was observed leaving the CC in the cardiac-recurrent nerve, dorsal to the proventriculus, in the direction of the abdomen. The cells that contain the α-endorphin-like material are different from those of the MNC that contain insulin-, pancreatic polypeptide-, and gastrin/CCK-like peptides. This finding demonstrates the considerable complexity and peptidergic nature of the MNC and constitutes further evidence that morphinomimetic-like peptides are present in the nervous system of invertebrates.

Key words

α-Endorphin Immunocytochemistry Median neurosecretory cells Peptidergic neurones Calliphora vomitoria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alumets J, Håkanson R, Sundler F, Thorell J (1979) Neuronal localisation of immunoreactive enkephalin and β-endorphin in the earthworm. Nature (Lond) 279:805–806Google Scholar
  2. Beaumont A, Hughes J (1979) Biology of opioid peptides. Ann Rev Pharmacol Toxicol 19:245–267Google Scholar
  3. Bloch B, Thomsen E, Thomsen M (1966) The neurosecretory system of the adult Calliphora erythrocephala. III Electronmicroscopy of the medial neurosecretory cells of the brain and some adjacent cells. Z Zellforsch 70:185–208Google Scholar
  4. Duve H, Thorpe A (1979) Immunofluorescent localization of insulin-like material in the median neurosecretory cells of the blowfly, Calliphora vomitoria (Diptera). Cell Tissue Res 200:187–191Google Scholar
  5. Duve H, Thorpe A (1980) Localisation of pancreatic polypeptide (PP)-like immunoreactive material in neurones of the brain of the blowfly, Calliphora erythrocephala (Diptera). Cell Tissue Res 210:101–109Google Scholar
  6. Duve H, Thorpe A (1981) Gastrin/cholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora erythrocephala (Diptera). Gen Comp Endocrinol 43:381–391Google Scholar
  7. Duve H, Thorpe A (1982) The distribution of pancreatic polypeptide in the nervous system and gut of the blowfly, Calliphora vomitoria (Diptera). Cell Tissue Res 227:67–77Google Scholar
  8. Duve H, Thorpe A, Strausfeld NJ (1983) Cobalt-immunocytochemical identification of peptidergic neurons in Calliphora innervating central and peripheral targets. J Neurocytol (inpress)Google Scholar
  9. El-Salhy M, Abou-El-Ela R, Falkmer S, Grimelius L, Wilander E (1980) Immunohistochemical evidence of gastro-entero-pancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Eristalis aeneus. Regul Peptides 1:187–204Google Scholar
  10. Gesser BP, Larsson L.-I (1983) Localisation of α-MSH-, endorphin- and gastrin/CCK-like immunoreactivities in the nervous system of invertebrates. In: Angelucci L, de Wied D, Endröczi E, Scapagnini U (eds) Integrative neurohumoral mechanisms: Elsevier Biomedical Press, Amsterdam (in press)Google Scholar
  11. Gros C, Lafon-Cazal M, Dray F (1978) Présence de substances immunoréactivement apparentées aux enképhalines chez un insecte, Locusta migratoria. CR Acad Sci Paris Sér D 287:647–650Google Scholar
  12. Hansen BL, Hansen GN, Scharrer B (1982) Immunoreactive material resembling vertebrate neuropeptides in the corpus cardiacum and corpus allatum of the insect Leucophaea maderae. Cell Tissue Res 225:319–329Google Scholar
  13. Huang W.-Y, Chang RCC, Kastin AJ, Coy DH, Schally AV (1979) Isolation and structure of pro-methionine-enkephalin: Potential enkephalin precursor from porcine hypothalamus. Proc Natl Acad Sci USA 76:6177–6180Google Scholar
  14. Imura H, Nakai Y (1981) “Endorphins” in pituitary and other tissues. Ann Rev Physiol 43:265–278Google Scholar
  15. Larsson L.-I (1980) Problems and pitfalls in immunocytochemistry of gut peptides. In: Glass GBJ (ed) Gastrointestinal hormones. Raven Press, NYGoogle Scholar
  16. LeRoith D, Liotta AS, Roth J, Shiloach J, Lewis ME, Pert CB, Krieger DT (1982) Corticotropin and β-endorphin-like materials are native to unicellular organisms. Proc Natl Acad Sci USA 79:2086–2090Google Scholar
  17. Mancillas JR, McGinty JF, Selverston AI, Karten H, Bloom FE (1981) Immunocytochemical localisation of enkephalin and substance P in retina and eyestalk neurones of lobster. Nature (Lond) 293:576–578Google Scholar
  18. Martin R, Frösch D, Weber E, Voigt KH (1979) Met-enkephalin-like immunoreactivity in a cephalopod neuronal organ. Neurosci Lett 15:253–257Google Scholar
  19. Miller RJ, Cuatrecasas P (1978) Enkephalins and endorphins. Vitam Horm 36:297–382Google Scholar
  20. Pollard H, Llorens-Cortes C, Schwartz JC (1977) Enkephalin receptors on dopaminergic neurones in rat striatum. Nature (Lond) 268:745–747Google Scholar
  21. Rémy Ch, Dubois MP (1979) α-endorphin-like cells in the infra-oesophageal ganglions of the earthworm Dendrobaena subrubicunda Eisen. Immunocytochemical localisation. Experientia 35:137–138Google Scholar
  22. Rémy Ch, Dubois MP (1981) Immunohistological evidence of methionine enkephalin-like material in the brain of the migratory locust. Cell Tissue Res 218:271–278Google Scholar
  23. Rémy Ch, Girardie J, Dubois MP (1978) Présence dans la ganglion sousoesophagien de la chenille processionaire du Pin (Thaumetopoea pityocampa Schiff) de cellules révélées en immunofluorescence par un anticorps anti-α-endorphine. CR Acad Sci Paris Sér D 286:651–653Google Scholar
  24. Rémy Ch, Girardie J, Dubois MP (1979) Vertebrate neuropeptide-like substances in the suboesophageal ganglion of two insects: Locusta migratoria R and F. (Orthoptera) and Bombyx mori L. (Lepidoptera). Immunocytological investigation. Gen Comp Endocrinol 37:93–100Google Scholar
  25. Simantov R, Goodman R, Aposhian D, Snyder SH (1979) Phylogenetic distribution of a morphine-like peptide “enkephalin”. Brain Res 111:204–211Google Scholar
  26. Snyder SH (1975) Opiate receptor in normal and drug altered brain function. Nature (Lond) 257:185–189Google Scholar
  27. Steel CGH, Lees AD (1977) The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. J Exp Biol 67:117–135Google Scholar
  28. Stefano GB, Catapane EJ (1979) Enkephalins increase dopamine levels in the CNS of a marine mollusc. Life Sci 24:1617–1622Google Scholar
  29. Stefano GB, Hiripi L (1979) Methionine enkephalin and morphine alter monoamine and cyclic nucleotide levels in the cerebral ganglia of the freshwater bivalve Anodonta cygnea. Life Sci 25:291–298Google Scholar
  30. Stefano GB, Scharrer B (1981) High affinity binding of an enkephalin analog in the cerebral ganglion of the insect Leucophaea maderae (Blattaria). Brain Res 225:107–114Google Scholar
  31. Stefano GB, S.-Rózsa K, Hiripi L (1980) Actions of methionine enkephalin and morphine on single neuronal activity in Helix pomatia L. Comp Biochem Physiol 66 C: 193–198Google Scholar
  32. Stefano GB, Scharrer B, Assanah P (1982) Demonstration, characterisation and localization of opioid binding sites in the midgut of the insect Leucophaea maderae (Blattaria). Brain Res 253:205–212Google Scholar
  33. Stern AS, Lewis RV, Kimura S, Rossier J, Gerber LD, Brink L, Stein S, Udenfriend S (1979) Isolation of the opioid heptapeptide Met-enkephalin (Arg6, Phe7) from bovine adrenal medullary granules and striatum. Proc Natl Acad Sci USA 76:6680–6683Google Scholar
  34. Stewart JM, Getto CJ, Neldner K, Reeve EB, Krivoy WA, Zimmermann E (1976) Substance P and analgesia. Nature (Lond) 262:784–785Google Scholar
  35. Thomsen E (1952) Functional significance of the neurosecretory brain cells and the corpus cardiacum in the female blowfly, Calliphora erythrocephala Meig. J Exp Biol 29:137–172Google Scholar
  36. Thomsen M (1965) The neurosecretory system of the adult Calliphora erythrocephala. II. Histology of the neurosecretory cells of the brain and some related structures. Z Zellforsch 67:693–717Google Scholar
  37. Thomsen M (1969) The neurosecretory system of the adult Calliphora erythrocephala. IV. A histological study of the corpus cardiacum and its connections with the nervous system. Z Zellforsch 94:205–219Google Scholar
  38. Weitzman RE, Fisher DA, Minick S, Ling N, Guillemin R (1977) β-endorphin stimulates secretion of arginine vasopressin in vivo. Endocrinology 101:1643–1646Google Scholar
  39. Williamson ME, Emson PC (1982) Peptides in the brain of the common snail, Helix aspersa. Biochem Soc Trans 10:384–385Google Scholar
  40. Zipser B (1980) Identification of specific leech neurones immunoreactive to enkephalin. Nature (Lond) 283:857–858Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Hanne Duve
    • 1
  • Alan Thorpe
    • 1
  1. 1.School of Biological Sciences, Queen Mary College, London UniversityLondonEngland

Personalised recommendations