European Journal of Nuclear Medicine

, Volume 21, Issue 9, pp 937–946 | Cite as

Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography

  • Frangoise Biver
  • Serge Goldman
  • André Luxen
  • Michel Monclus
  • Manuel Forestini
  • Julien Mendlewicz
  • Françoise Lotstra
Original Articles

Abstract

Serotoninergic type 2 (5HT2) receptors have been implicated in the regulation of many brain functions in humans and may play a role in several neurological and psychiatric diseases. Fluorine-18 altanserin has been proposed as a new radiotracer for the study of 5HT2 receptors by PET because of its high affinity for 5HT2 receptors (Ki: 0.13 nM) and its good specificity in in vitro studies. Dynamic PET studies were carried out in 12 healthy volunteers after intravenous injection of 0.1 mCi/kg [18F]altanserin. Ninety minutes after injection, we observed mainly cortical binding. Basal ganglia and cerebellum showed very low uptake and the frontal cortex to cerebellum ratio was about 3. To evaluate the quantitative distribution of this ligand in the brain, we used two different methods of data analysis: a four-compartment model was used to achieve quantitative evaluation of rate constants (K1 and k2 through k6) by non-linear regression, and a multiple-time graphical analysis technique for reversible binding was employed for the measurement of k1/k2 and k3/k4 ratios. Using both methods, we found significant differences in binding capacity (estimated by k3/k4 = Bmax/Kd) between regions, the values increasing as follows: occipital, limbic, parietal, frontal and temporal cortex. After correction of values obtained by the graphical method for the existence of non-specific binding, results generated by the two methods were consistent.

Key words

Fluorine-18 altanserin 5HT2 receptors Modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown SL, Van Praag HM. The role of serotonin in psychiatric disorders. New York: Brunner/Mazel, 1991.Google Scholar
  2. 2.
    Kandel ER, Schwartz JH. Principles of neural science, 3rd edn. New York: Elsevier, 1991.Google Scholar
  3. 3.
    Schotte A, Maloteaux JM, Laduron PM. Characterization and regional distribution of serotonin S2-receptors in human brain. Brain Res 1983; 276: 231–235.Google Scholar
  4. 4.
    Pazos A, Probst A, Palacios JM. Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 1987; 21: 123–139.Google Scholar
  5. 5.
    Wang DF, Wagner HN, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 1984; 226: 1393–1396.Google Scholar
  6. 6.
    Nysberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5HT2 and D2 dopamine receptor occupancy in the living human brain: a PET study with risperidone. Psychopharmacology 1993, 110: 265–272.Google Scholar
  7. 7.
    Baron JC, Samson Y, Comar D, Crouzel C, Deniker P, Agid Y. Etude in vivo des récepeurs sérotoninergiques centraux chez l'homme par tomographie à positons. Rev Neurol (Paris) 1985;141:8–9:537–545.Google Scholar
  8. 8.
    Wong DF, Lever JR, Hartig PR, Dannals RF, Villemagne V, Hoffman BJ, Wilson AA, Ravert HT, Links JM, Scheffel U, Wagner HN. Localization of serotonin 5HT2 receptors in living human brain by positron emission tomography using N1-([11C]-methyl)-2-Br-LSD. Synapse 1987; 1: 393–398.Google Scholar
  9. 9.
    Frost JJ, Dannals RF, Mayberg HS, Links JM, Ravert HT, Kubar MJ, Wagner HN. Regional localization of serotonin-2 receptors in man using C- 11-N-Methylketanserin (NMKET) and PET [abstract]. J Nucl Med 1987; 28: 600Google Scholar
  10. 10.
    Blin J, Sette G, Morelli M, Bletry O, Elghozi JL, Crouzel C, Baron JC. A method for the in vivo investigation of the serotonergic 5HT2 receptors in the human cerebral cortex using positron emission tomography and 18H-labelled setoperone. J Neurochem 1990; 54: 1744–1754.Google Scholar
  11. 11.
    Leysen JE. Use of 5HT receptor agonists and antagonists for the characterization of their respective receptor sites. In: Boulton AB, Baker GB, Jurio AV (eds) Drugs as tools in neurotransmitter research (Neuromethods, vol 12). Clifton, N.J.: Humana Press; 1989: 299–349.Google Scholar
  12. 12.
    Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L. Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med 1991; 32: 2266–2272.Google Scholar
  13. 13.
    Sadzot B, Lemaire C, Cantineau R, Salmon E, Plenevaux A, Maquet P, Hermanne JP, Franck G, Guillaume M. Imaging serotonin-S2 receptors in humans with PET and the selective S2 antagonist fluorine- l8-altanserin [abstract]. J Nucl Med 1990;31: 1584.Google Scholar
  14. 14.
    Monclus M, Masson C, Luypaert PJ, Van Naemen J, Ledent E, Luxen A. Nucleophilic [F-18]radiofluorination using microwave cavity: application to fluorine [F-18]FDG and [F18]altanserin synthesis [abstract]. Eur J Nucl Med 1993; 20:1000.Google Scholar
  15. 15.
    Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990; 10: 740–747.Google Scholar
  16. 16.
    Monclus M, Luxen A. A convenient synthesis of (4-nitrophenyl)(4-piperidinyl) ketone. Org Prep Proced Int 1992; 24:692–694.Google Scholar
  17. 17.
    Monclus M, Biver F, Goldman S, Luxen A. [18F]altanserin: a short synthesis of the nitroprecursor and preliminary metabolic studies in rat. J Labelled Compd Radiopharm 1992; 31: 523–524.Google Scholar
  18. 18.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain-3-dimensional proportional system: an approach to cerebral imaging. New York: Thieme Medical, 1988.Google Scholar
  19. 19.
    Frost JJ, Douglass KH, Mayberg HS, Dannals RF, Links JM, Wilson AA, Ravert HT, Crozier WC, Wagner HN. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography. J Cereb Blood Flow Metab 1989; 9: 398–409.Google Scholar
  20. 20.
    Hawkins RA, Phelps ME, Huang SC. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab 1986; 6: 170–183.Google Scholar
  21. 21.
    Marquardt DW. J Soc Ind Appl Math 1963; 11: 431–441.MATHGoogle Scholar
  22. 22.
    Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emisson tomography. Ann Neurol 1984; 15: 217–227.Google Scholar
  23. 23.
    Wienhard K. Modelisation: application to the D2 receptors. In: Baron JC et al. (eds) Brain dopaminergic systems: imaging with positron tomography. Netherlands: Kluwer Academic; 1991:85–95.Google Scholar
  24. 24.
    Biver F, Goldman S, Monclus M, Luxen A, Lotstra F, Mendlewicz J. Autoradiographic study of [18F]altanserin in the rat: a potential radiotracer for 5HT2 receptor study with PET. Clin Neuropharmacol 1992; 15 Suppl 1, pt B: 202.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Frangoise Biver
    • 1
    • 2
  • Serge Goldman
    • 2
  • André Luxen
    • 2
  • Michel Monclus
    • 2
  • Manuel Forestini
    • 2
  • Julien Mendlewicz
    • 1
  • Françoise Lotstra
    • 1
  1. 1.Psychiatry Department, Erasme HospitalFree University of BrusselsBrusselsBelgium
  2. 2.PET-Biomedical Cyclotron Unit, Erasme HospitalFree University of BrusselsBrusselsBelgium

Personalised recommendations