Advertisement

Experimental Brain Research

, Volume 20, Issue 5, pp 485–504 | Cite as

Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurons in the cat

  • J. L. Henry
  • F. R. Calaresu
Article

Summary

  1. 1.

    In chloralosed vagotomized cats medullary structures projecting to spinal (T2) sympathetic neurons were identified by activating fibre terminals in the intermediolateral nucleus (ILN) at functionally and histologically identified cardioacceleratory sites and exploring the ipsilateral medulla for evoked field and single unit potentials.

     
  2. 2.

    In 23 cats evoked field potentials with a mean latency of 1.5 msec were recorded at 264 sites in 216 penetrations in the right medulla and at 101 sites in 81 penetrations in the left medulla. These potentials followed stimulation at 300 Hz and persisted after asphyxia and administration of sodium pentobarbital.

     
  3. 3.

    In 7 cats single unit activity was recorded from 39 units which followed the stimulus at a constant short latency of activation (mean 1.7 msec), exhibited cancellation of antidromic with orthodromic spikes and fractionation at high frequencies, and responded to paired stimuli delivered at short intervals (mean minimum interval 1.27 msec, range 0.58–2.3 msec).

     
  4. 4.

    Stimulation of 79 sites at which evoked field potentials were recorded in the right medulla elicited cardioacceleration mainly from N. lateralis reticularis and N. parvocellularis, and cardiac slowing mainly from N. paramedium reticularis, raphe NN. and N. medullae oblongatae centralis subnucleus ventralis; stimulation of 101 sites in the left medulla changed heart rate at only 3 sites.

     
  5. 5.

    It is concluded that: a) medullary inputs to spinal sympathetic neurons arise from discrete nuclei; b) structures from which cardioacceleration and cardiac slowing were elicited provide excitatory and inhibitory inputs, respectively, to spinal cardioacceleratory neurons; c) the efferent limb of reflexes controlling heart rate appears to be localized mainly on the right side of the medulla; d) the vasomotor centre provides multiple excitatory and inhibitory inputs from specific reticular nuclei to the ILN.

     

Key words

Descending medullo-spinal pathways Cardiovascular control Medulla Spinal cord Vasomotor centre 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achari, N.K., Downman, C.B.B., Weber, W.V.: A cardioinhibitory pathway in the brain stem of the cat. J. Physiol. (Lond.) 197, 35P (1968)Google Scholar
  2. Alexander, R.S.: Tonic and reflex functions of medullary sympathetic cardiovascular centers. J. Neurophysiol. 9, 205–217 (1946)Google Scholar
  3. Bach, L.M.N.: Relationships between bulbar respiratory, vasomotor and somatic facilitatory and inhibitory areas. Amer. J. Physiol. 171, 417–435 (1952)Google Scholar
  4. Bartorelli, C., Bizzi, E., Libretti, A., Zanchetti, A.: Inhibitory control of sino-carotid pressoceptive afferents on hypothalamic autonomic activity and sham rage behavior. Arch. ital. Biol. 98, 308–326 (1960)Google Scholar
  5. Baust, W., Heinemann, H.: The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp. Brain Res. 3, 12–24 (1967)Google Scholar
  6. Biscoe, T.J., Sampson, S.R.: Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. (Lond.) 209, 341–358 (1970a)Google Scholar
  7. Biscoe, T.J., Sampson, S.R.: Response of cells in the brain stem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. (Lond.) 209, 359–373 (1970b)Google Scholar
  8. Bishop, P.O., Burke, W., Dayis, R.: Single unit recording from antidromically activated optic radiation neurones. J. Physiol. (Lond.) 162, 432–450 (1962)Google Scholar
  9. Bonvallet, M., Dell, P., Hiebel, G.: Tonus sympathique et activité électrique corticale. Electroenceph. clin. Neurophysiol. 6, 119–144 (1954)Google Scholar
  10. Brock, L.G., Coombs, J.S., Eccles, J.C.: Intracellular recording from antidromically activated motoneurones. J. Physiol. (Lond.) 122, 429–461 (1953)Google Scholar
  11. Brodal, A.: The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. William Ramsay Henderson Trust Lecture. Edinburgh: Oliver and Boyd 1957Google Scholar
  12. Calaresu, F.R., Henry, J.L.: The mechanism of the cardio-acceleration elicited by electrical stimulation of the parahypoglossal area in the cat. J. Physiol. (Lond.) 210, 107–120 (1970)Google Scholar
  13. Calaresu, F.R., Pearce, J.W.: Effects on heart rate of electrical stimulation of medullary vagal structures in the cat. J. Physiol. (Lond.) 176, 241–251 (1965)Google Scholar
  14. Calaresu, F.R., Thomas, M.R.: The function of the paramedium reticular nucleus in the control of heart rate in the cat. J. Physiol. (Lond.) 216, 143–158 (1971)Google Scholar
  15. Chang, H.T.: Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J. Neurophysiol. 14, 1–21 (1951)Google Scholar
  16. Clark, G., Sperry, M.: Simplified Nissl stain with thionin. Stain Technol. 20, 23–24 (1945)Google Scholar
  17. Coombs, J.S., Eccles, J.C., Fatt, P.: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.) 130, 291–325 (1955)Google Scholar
  18. Cottle, M.K.: Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat. J. comp. Neurol. 122, 329–345 (1964)Google Scholar
  19. Cragg, B.G., Hamlyn, L.H.: Action potentials of the pyramidal neurons of the hippocampus of the rabbit. J. Physiol. (Lond.) 129, 608–627 (1955)Google Scholar
  20. Crill, W.E., Reis, D.J.: Distribution of carotid sinus and depressor nerves in cat brain stem. Amer. J. Physiol. 214, 269–276 (1968)Google Scholar
  21. Crosby, E.C., Humphrey, T., Lauer, E.W.: Correlative Anatomy of the Nervous System. pp. 56–111. New York: MacMillan 1962Google Scholar
  22. Culberson, J.L., Kimmel, D.L.: Central distribution of primary afferent fibers of the glossopharyngeal and vagal nerves in the opossum, Didelphis virginiana. Brain Res. 44, 325–335 (1972)Google Scholar
  23. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. Suppl. 232, 1–55 (1964)Google Scholar
  24. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurons systems. Acta physiol. scand. Suppl. 247, 7–36 (1965)Google Scholar
  25. Dahlström, A., Fuxe, K., Kernell, D., Sedvall, G.: Reduction of the monoamine stores in the terminals of bulbospinal neurones following stimulation of the medulla oblongata. Life Soi. 4, 1207–1212 (1965)Google Scholar
  26. Darian-Smith, I., Phillips, G., Ryan, R.D.: Functional organization in the trigeminal main sensory and rostral spinal nuclei of the cat. J. Physiol. (Lond.) 168, 129–146 (1963)Google Scholar
  27. Foreman, R.D., Wurster, R.D.: Electrophysiological characteristics of the descending sympathetic spinal pathways. Physiologist 15, 137 (1972)Google Scholar
  28. Gellhorn, E., Cortell, R., Murphy, J.P.: Are mass discharges characteristic of central autonomic structures ? Amer. J. Physiol. 146, 376–385 (1946)Google Scholar
  29. Gootman, P.M., Cohen, M.I.: Evoked splanchnic potentials produced by electrical stimulation of medullary vasomotor regions. Exp. Brain Res. 13, 1–14 (1971)Google Scholar
  30. Green, J.D.: A simple microelectrode for recording from the central nervous system. Nature (Lond.) 182, 962 (1958)Google Scholar
  31. Gunn, C.G., Sevelius, G., Puigarri, M.J., Myers, F.K.: Vagal cardiomotor mechanisms in the hind brain of the dog and cat. Amer. J. Physiol. 214, 258–262 (1968)Google Scholar
  32. Henry, J.L., Calaresu, F.R.: Descending connections between medulla and spinal cardio-acceleratory neurons in the cat. Proc. Can. Fed. Biol. Soc. 15, 697 (1972a)Google Scholar
  33. Henry, J.L., Calaresu, F.R.: Topography and numerical distribution of neurons of the thoraco-lumbar intermediolateral nucleus in the cat. J. comp. Neurol. 144, 205–214 (1972b)Google Scholar
  34. Henry, J.L., Calaresu, F.R.: Distribution of cardioacceleratory sites in intermediolateral nucleus of the cat. Amer. J. Physiol. 222, 700–704 (1972c)Google Scholar
  35. Henry, J.L., Calaresu, F.R.: Excitatory and inhibitory medullary nuclei projecting to spinal cardioacceleratory neurons in the cat. Fed. Proc. 32, 400 (1973)Google Scholar
  36. Henry, J.L., Calaresu, F.R.: Origin and course of crossed medullary pathways to spinal sympathetic neurons in the cat. Exp. Brain Res. 20, 515–526 (1974a)Google Scholar
  37. Henry, J.L., Calaresu, F.R.: Responses of single units in the intermediolateral nucleus to stimulation of cardioregulatory medullary nuclei in the cat. Brain Res. 77, 314–319 (1974b)Google Scholar
  38. Humphrey, D.R.: Neuronal activity in the medulla oblongata of cat evoked by stimulation of the carotid sinus nerve. In: Baroreceptors and Hypertension. Ed. by P. Kezdi. pp. 131–168. Toronto: Pergamon Press 1967Google Scholar
  39. Jouvet, M.: Mechanisms of the states of sleep. Res. Publ. Ass. nerv. ment. Dis. 45, 86–126 (1967)Google Scholar
  40. Kumada, M., Nakajima, H.: Field potentials evoked in rabbit brainstem by stimulation of the aortic nerve. Amer. J. Physiol. 223, 575–582 (1972)Google Scholar
  41. Lipski, J., McAllen, R.M., Spyer, K.M.: Location of sinus nerve afferent endings in the brain stem. J. Physiol. (Lond.) 225, 30P-31P (1972)Google Scholar
  42. Löfving, B.: Cardiovascular adjustments induced from the rostral cingulate gyms, with special reference to sympatho-inhibitory mechanisms. Acta physiol. scand. Suppl. 184, 1–82 (1961)Google Scholar
  43. Lorente de Nó, R.: Action potentials of the motoneurons of the hypoglossal nucleus. J. cell. comp. Physiol. 29, 207–287 (1947)Google Scholar
  44. Magnes, J., Moruzzi, G., Pompeiano, O.: Synchronization of the EEG produced by low frequency electrical stimulation of the solitary tract. Arch. ital. Biol. 99, 33–67 (1961)Google Scholar
  45. Mendell, L.M., Henneman, E.: Terminals of single Ia fibers: location, density, and distribution within a pool of 300 homonymous motoneurons. J. Neurophysiol. 34, 171–187 (1971)Google Scholar
  46. Miura, M., Reis, D.J.: Termination and secondary projections of carotid sinus nerve in the cat brain stem. Amer. J. Physiol. 217, 142–153 (1969)Google Scholar
  47. Monnier, M.: Les centres végétatifs bulbaires. Arch. int. Physiol. 49, 455–463 (1939)Google Scholar
  48. Morest, D.K.: Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J. comp. Neurol. 130, 277–293 (1967)Google Scholar
  49. Nelson, P.G., Frank, K.: Extracellular potential fields of single spinal neurons. J. Neurophysiol. 27, 913–925 (1964)Google Scholar
  50. Patton, H.D., Amassian, V.E.: The pyramidal tract: its excitation and functions. In: Handbook of Physiol. Neurophysiology. Sect. 2, Vol. II, pp. 837–861. Ed. by W.F. Hamilton and P. Dow. Washington: Amer. Physiol. Soc. 1960Google Scholar
  51. Peiss, C.N.: Concepts of cardiovascular regulation: past, present and future. In: Nervous Control of the Heart. pp. 154–197. Ed. by W.C. Randall. Baltimore: Williams and Wilkins 1965Google Scholar
  52. Pórszász, J., Barankay, T., Szolesány, J., Gibiszer-Pórszász, K., Madarász, K.: Studies of the neural connexion between the vasodilator and vasoconstrictor centres in the cat. Acta physiol. Acad. Sci. hung. 22, 29–41 (1962)Google Scholar
  53. Porter, R.: Unit responses evoked in the medulla oblongata by vagus nerve stimulation. J. Physiol. (Lond.) 168, 717–735 (1963)Google Scholar
  54. Reis, D.J., Doba, N.: Cardiodynamic changes associated with stimulation of the fastigial nucleus: similarity to orthostatic reflexes. Fed. Proc. 31, 368 (1972)Google Scholar
  55. Riley, H.A.: An Atlas of the Basal Ganglia, Brain Stem and Spinal Cord. pp. 1–41. New York: Hafner Publishing Co. 1960Google Scholar
  56. Rothballer, A.B.: Pathways of secretion and regulation of posterior pituitary factors. Res. Publ. Ass nerv. ment. Dis. 43, 86–131 (1963)Google Scholar
  57. Share, L.: Effects of carotid occlusion and left atrial distension on plasma vasopressin titer. Amer. J. Physiol. 208, 219–223 (1965)Google Scholar
  58. Smith, O.A.: Anatomy of central neural pathways mediating cardiovascular functions. In: Nervous Control of the Heart. pp. 34–52. Ed. by W.C. Randall. Baltimore: Williams and Wilkins 1965Google Scholar
  59. Taber, E.: Cytoarchitecture of the brain stem of the cat. J. comp. Neurol. 116, 27–69 (1981)Google Scholar
  60. Taylor, D.G., Gebber, G.L.: Functional organization of brain stem vasomotor area. Fed. Proc. 31, 377 (1972)Google Scholar
  61. Wang, S.C., Chai, C.Y.: Central control of baroreceptor reflex mechanisms. In: Baroreceptors and Hypertension, pp. 117–130. Ed. by P. Kezdi. Toronto: Pergamon Press 1867Google Scholar
  62. Wang, S.C., Ranson, S.W.: Autonomic responses to electrical stimulation of the lower brain stem. J. comp. Neurol. 71, 437–455 (1939)Google Scholar
  63. Williams, R.L.: Lower Brain Stem Mechanisms of Cardiovascular Control in the Cat. Kingston, Ontario: Ph. D. Thesis, Queen's University 1966Google Scholar
  64. Wolstencroft, J.H.: Reticulospinal neurons. J. Physiol. (Lond.) 174, 91–108 (1964)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. L. Henry
    • 1
    • 2
  • F. R. Calaresu
    • 1
  1. 1.Department of PhysiologyUniversity of Western OntarioLondonCanada
  2. 2.Department of Research in AnaesthesiaMcIntyre Medical Science Building, McGill UniversityMontrealCanada

Personalised recommendations