Advertisement

Experimental Brain Research

, Volume 37, Issue 2, pp 317–336 | Cite as

Smooth pursuit eye movements and optokinetic nystagmus elicited by intermittently illuminated stationary patterns

  • F. Behrens
  • O. -J. Griisser
Original Articles

Summary

Stationary periodic visual patterns (row of equally spaced dots or black-white stripes) of the period Ps illuminated stroboscopically with a flash frequency fs induce an apparent movement perception (σ-movement) when slow eye movements are performed across the periodic pattern. The movement appears in the direction of the eye movements when the angular speed of the eyes corresponds to the following condition:
$$\overline {\text{V}} = {\text{k}} \cdot {\text{P}}_{\text{s}} \cdot {\text{f}}_{\text{s}} \cdot [\deg \cdot {\text{s}}^{{\text{ - 1}}} ]$$
(1)
k is a constant and equals 1 (or exceptionally 2 or 3). The σ-movement induces a σ-OKN with an average angular speed of its slow phases corresponding to Eq.(l). σ-OKN can be elicited when identical foveal or identical extrafoveal stimulus patterns are applied from flash to flash. A considerable random variablility of the flash sequence does not interrupt the σ-movement and the σ-OKN. Both phenomena can also be elicited by a stimulus pattern with its periodicity hidden in spatial noise and this periodic pattern only becomes visible during the eye movements. It is argued that the σ-phenomena are caused by efference copy signals of the gaze control system, which interact with the afferent signals (displacement of visual stimuli on the retina) at different levels of the afferent visual system. One interaction is supposed at a cortical level where the extrapersonal visual space is represented.

Key words

Optokinetic nystagmus Sigma-movement Efference copy Visual psychophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, B., Grüsser, O.-J.: Sigma-movement and Sigma-OKN elicited by stroboscopically illuminated periodic stereo-patterns. Exp. Brain Res. (subm.) (1979)Google Scholar
  2. Ansorge, K., Grüsser-Cornehls, U.: Visual and visual-vestibular responses of frog cerebellar neurons. Exp. Brain Res. 29, 445–465 (1977)Google Scholar
  3. Behrens, F., Grüsser, O.-J.: Optokinetic nystagmus, pursuit eye movements, and apparent motion perception induced by intermittently illuminated stationary patterns. Exp. Brain Res. 30, R6-R7 (1977)Google Scholar
  4. Behrens, F., Grüsser, O.-J.: Bewegungswahrnehmung und Augenbewegungen bei Flickerbeleuchtung unbewegter visueller Muster. In: Augenbewegungsstörungen, Neurophysiologie und Klinik, G. Kommerell (ed.), pp. 273–283. München: Bergmann 1978Google Scholar
  5. Brindley, G.S., Goodwin, G.M., Kulikowski, J.J., Leighton, D.: Stability of vision with a paralysed eye. J. Physiol. (Lond.) 258, 65–66 (1976)Google Scholar
  6. Dichgans, J., Körner, F., Voigt, K.: Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteilheit. Psychol. Forsch. 32, 277–295 (1969)Google Scholar
  7. Eckmiller, R., Petsch, J.: A digital instantaneous impuls rate meter for neural activity. Electroenceph. Clin. Neurophysiol. 39, 414–416 (1975)Google Scholar
  8. Filehne, W.: Über das optische Wahrnehmen von Bewegungen. Z. Sinnesphysiol. 53, 134–144 (1922)Google Scholar
  9. Gregory, R.L.: Eye movements and the stability of the visual world. Nature 182, 1214–1216 (1958)Google Scholar
  10. Grüsser, O.-J., Nikolay, H., Pause, M., Schreiter, U.: Sigma-optokinetic nystagmus in rabbits. Pflügers Arch. 379, R52 (1979)Google Scholar
  11. Grüsser, O.-J., Pause, M., Schreiter, U.: Quantitative properties of the sigma-optokinetic nystagmus of monkeys. Exp. Brain Res. (in prep.) (1979)Google Scholar
  12. Grüsser, O.-J., Pause, M., Schreiter, U.: Three methods to elicit sigma-optokinetic nystagmus in Java monkeys. Exp. Brain Res. 35, 519–526 (1979)Google Scholar
  13. Grüsser-Cornehls, U.: Response of movement-detecting neurons of the frog's retina to moving patterns under stroboscopic illumination. Pflügers Arch. Physiol. 303, 1–13 (1968)Google Scholar
  14. Heywood, S.: Pursuing stationary dots: smooth eye movements and apparent movement. Perception 2, 181–195 (1973)Google Scholar
  15. Heywood, S., Churcher, J.: Eye movements and the after-image. I. Tracking the after-image. Vision Res. 11, 1163–1168 (1971)Google Scholar
  16. Heywood, S., Churcher, J.: Eye movements and the after-image. II. The effect of foveal and non-foveal after-images on saccadic behaviour. Vision Res. 12, 1033–1043 (1972)Google Scholar
  17. Holst, E. von: Relations between the central nervous system and the peripheral organs. Br. J. Animal Behav. 2, 89–94 (1954)Google Scholar
  18. Holst, E. von, Mittelstaedt, H.: Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 20, 464–465 (1950)Google Scholar
  19. Julesz, B.: Foundations of cyclopean perception, p. 406. Chicago: Univ. of Chicago Press 1971Google Scholar
  20. Jung, R.: Nystagmographie: Zur Physiologie und Pathologie des optisch-vestibulären Systems beim Menschen. In: Handbuch der inneren Medizin, 4. Aufl. Vol. V/l. Bergmann, Frey und Schwiegk (eds.), pp. 1325–1379. Berlin, Heidelberg, New York: Springer 1953Google Scholar
  21. Jung, R.: Neurophysiological and psychophysical correlates in vision research. In: Brain and human behaviour. Karzmar, A.G., Eccles, J.C. (eds.), pp. 209–258. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  22. Jung, R.: Visual perception and neurophysiology. In: Handbook of Sensory Physiology. Jung, R. (ed.), Vol. VII/3A, pp. 1–152. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  23. Kommerell, G., Klein, U.: Über die visuelle Regelung der Okulomotorik: Die optomotorische Wirkung exzentrischer Nachbilder. Vision Res. 11, 905–920 (1971)Google Scholar
  24. Kommerell, G., Träumer, R.: Investigations of the eye tracking system through stabilized retinal images. In: Cerebral control of eye movements and motion perception. Dichgans, J., Bizzi, E. (eds.), pp. 288–297. Basel: Karger 1972Google Scholar
  25. Korn, A.: Untersuchung von Eigenschaften des Augenfolgesystems mit Hilfe von Scheinbewegungen Z. Exp. Angew. Psychol. 21, 378–393 (1974)Google Scholar
  26. Kornmüller, A.: Eine experimentelle Anästhesie der äußeren Augenmuskeln am Menschen und ihre Auswirkungen. J. Psychol. Neurol. (Lpz.) 41, 354–366 (1931)Google Scholar
  27. Lamontagne, C.: A new type of apparent motion as a measure of human visual tracking. Bionics Research Laboratory, Edinburgh University, Memorandum Percept-9, 1972Google Scholar
  28. Lamontagne, C.: A new experimental paradigm for the investigation of the secondary system of human visual motion perception 2, 167–180 (1973)Google Scholar
  29. Mach, E.: Beiträge zur Analyse der Empfindungen. Jena: VEB G. Fischer 1886Google Scholar
  30. MacKay, D.M.: Cerebral organization and the conscious control of action. In: Brain and conscious experience. Eccles, J.C. (ed.), pp. 422–445. New York: Springer 1966Google Scholar
  31. MacKay, D.M.: Visual stability and voluntary eye movement. In: Handbook of sensory physiology. Jung, R. (ed.), Vol. VII/3, pp. 307–331. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  32. Mackensen, G.: Untersuchungen zur Physiologie des optokinetischen Nystagmus. Graefes Arch. Ophthalmol. 155, 284–313 (1954)Google Scholar
  33. McCrea, R. A., Baker, R., Delgado-Garcia, J.: Afferent and efferent organization of the prepositus hypoglossi nucleus. Progr. Brain Res. (in press) (1979)Google Scholar
  34. Pause, M., Schreiter, U.: A method to produce sigma-movement perception and sigma-OKN in Java monkeys. J. Physiol. (Lond.) 377, R49 (1978)Google Scholar
  35. Rock, I., Ebenholtz, S.: Stroboscopic movement based on change of phenomenal rather than retinal location. Am. J. Psychol. 75, 193–207 (1962)Google Scholar
  36. Sechenow, I.: The elements of thought (1878). Translated in: The lectured works, pp. 403–489. Amsterdam: Bonset 1968Google Scholar
  37. Siebeck, R.: Wahrnehmungsstörung und Störungswahrnehmung bei Augenmuskellähmungen. Graefes Arch. Ophthalmol. 155, 26–34 (1954)Google Scholar
  38. Simpson, J.I., Soodak, R. E., Hess, R.: The accessory optic system and its relation to the vestibular cerebellum. Progr. Brain Res. (in press) (1979)Google Scholar
  39. Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482–489 (1950)Google Scholar
  40. Stevens, J.K., Emerson, R.C., Gerstein, G.L., Kallos, T., Neufeld, G.R., Nichols, C.W., Rosenquist, A.C.: Paralysis of the awake human: Visual perceptions. Vision Res. 16, 93–98 (1976)Google Scholar
  41. Stoper, A.E.: Apparent motion of stimuli presented stroboscopically during pursuit movement of the eye. Percept. Psychophys. 13, 201–211 (1973)Google Scholar
  42. Teuber, H.L.: Perception. In: Handbook of physiology — neurophysiology III. Field, I. (éd.), pp. 1595–1668. Baltimore: Williams and Wilkins 1960Google Scholar
  43. Uexküll, J. von: Theoretische Biologie. Berlin: Springer 1920Google Scholar
  44. Waespe, W., Henn, V.: Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Exp. Brain Res. 30, 323–330 (1977)Google Scholar
  45. Weizsäcker, V. von: Der Gestaltkreis. Leipzig: Thieme 1940. Reprint: p. 294. Frankfurt: Suhrkamp 1973Google Scholar
  46. Wist, E.R., Diener, H.C., Dichgans, J.: Motion constancy dependent upon perceived distance and the spatial frequency of the stimulus pattern. Percept. Psychophys. 19, 485–491 (1976)Google Scholar
  47. Yasui, S., Young, L.R.: Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190, 906–908 (1975)Google Scholar
  48. Young, L.R.: Pursuit eye movement — what is being pursued? In: Control of gaze by brain stem neurons. Baker, R., Berthoz, A. (eds.), pp. 29–47. Amsterdam, New York: Elsevier 1977Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • F. Behrens
    • 1
  • O. -J. Griisser
    • 1
  1. 1.Department of PhysiologyFreie Universität BerlinBerlin 33

Personalised recommendations