Experimental Brain Research

, Volume 27, Issue 2, pp 181–201 | Cite as

Response characteristics and vestibular receptor convergence of frog cerebellar Purkinje cells. A natural stimulation study

  • R. H. I. Blanks
  • W. Precht
  • M. L. Giretti


  1. 1.

    The horizontal sinusoidal frequency response and the problem of vestibular receptor convergence in Purkinje cells (P-cells) of the auriculum, dorsal rim and corpus cerebelli were studied in curarized frogs with natural stimulation.

  2. 2.

    Primarily “simple” but also “complex” spikes were evoked by sinusoidal stimulation of the horizontal canals. P-cell “simple” spike activity could be grouped into types I–IV. Type I and II responses were directionally sensitive and thus were evoked at the stimulus frequency. Type III (and IV) cells, on the other hand, had response waveforms double that of the input frequency, with peak increases (or decreases) in discharge inphase with head velocity in the mid-frequency range. Except in the cerebellar midline regions where type III response waveforms were symmetrical, ipsilateral sinusoidal responses were larger in magnitude than those evoked during contralateral rotation. Despite the differences in magnitudes, ipsiand contralateral response phase angles for one cell were approximately equal. “Complex” spikes were evoked with ipsi (type I) or contralateral (type II) horizontal rotation. Generally only 1–2 spikes were evoked per cycle with short (0–60 °) or long (120–150 °) phase-lags following acceleration.

  3. 3.

    A Bode analysis of type I “simple” spike activity in yaw indicates a slightly greater phase-lag and a 10–15 fold smaller P-cell gain in the range 0.05–0.5 Hz when compared to peripheral horizontal canal neurons.

  4. 4.

    Stimulation of the vertical canals and otolith organs also evoked “simple” and, to a lesser extent, “complex” P-cell spikes. “Simple” spikes were in most cases (85%) evoked by stimulation of several canal and/or otolithic receptors thus demonstrating a high degree of receptor convergence. “Complex” spikes, however, were only evoked by stimulation of one canal or otolith receptor.

  5. 5.

    Otolithic input to P-cells, examined statically and with low level constant velocity rolls, was mainly phasic or phasic-tonic in nature.


Key words

Cerebellum Semicircular canal Otolith organs Natural Stimulation Frog 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blanks, R.H.I., Giretti, M.L., Precht, W.: On the problem of semicircular canal convergence on cerebellar Purkinje cells in the frog. Pflügers Arch. Suppl. 356, R 102 (1975)Google Scholar
  2. Blanks, R.H.I., Giretti, M.L., Precht, W.: Vestibular responses of cerebellar Purkinje cells to natural vestibular stimulation in curarized frogs. Exp. Brain Res. Suppl. 25, 23 (1975)Google Scholar
  3. Blanks, R.H.I., Precht, W.: Functional characterization of primary vestibular afferents in the frog. Exp. Brain Res. 25, 369–390 (1976)Google Scholar
  4. Blanks, R.H.I., Volkind, R., Precht, W.: A mechanism for type III vestibular responses of Purkinje cells recorded in the frog vestibulocerebellum. Pflügers Arch. 232, R 50 (1976)Google Scholar
  5. Carpenter, R.H.S.: Cerebellectomy and the transfer function of the vestibulo-ocular reflex in the decerebrate cat. Proc. roy. Soc. B 181, 353–374 (1972)Google Scholar
  6. Curthoys, I.S., Markham, C.H.: Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res. 35, 469–490 (1971)Google Scholar
  7. Dieringer, N.: Responses of Purkinje cells in the cerebellum of the grassfrog (Rana temporaria) to somatic and visual stimuli. J. comp. Physiol. 90, 409–436 (1974)Google Scholar
  8. Dow, R.S., Moruzzi, G.: The Physiology and Pathology of the Cerebellum. Minneapolis: The University of Minnesota Press 1958Google Scholar
  9. Duensing, F., Schaefer, K.P.: Über die Konvergenz verschiedener labyrinthärer Afferenzen auf einzelne Neurone des Vestibulariskerngebietes. Arch. Psychiat. Nervenkr. 199, 345–371 (1959)Google Scholar
  10. Eccles, J.C., Llinás, R., Sasaki, K.: Parallel fibre Stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp. Brain Res. 1, 17–39 (1966a)Google Scholar
  11. Eccles, J.C., Llinás, R., Sasaki, K.: The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J. Physiol. (Lond.) 182, 268–296 (1966b)Google Scholar
  12. Ferin, M., Grigorian, R.A., Strata, P.: Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exp. Brain Res. 12, 1–17 (1971)Google Scholar
  13. Fernández, C., Goldberg, J.M.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of pheripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971)Google Scholar
  14. Fujita, Y., Rosenberg, J., Segundo, J.P.: Activity of cells in the lateral vestibular nuclei as a function of head position. J. Physiol. (Lond.) 196, 1–18 (1968)Google Scholar
  15. Fuller, P.M.: Projections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Brain Behav. Evol. 10, 157–169 (1974)Google Scholar
  16. Gardner, E.P., Fuchs, A.F.: Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J. Neurophysiol. 38, 627–649 (1975)Google Scholar
  17. Ghelarducci, B.: Responses of the cerebellar fastigial neurones to tilt. Pflügers Arch. 344, 195–206 (1973)Google Scholar
  18. Ghelarducci, B., Ito, M., Yagi, N.: Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res. 87, 66–72 (1975)Google Scholar
  19. Gregory, K.M.: The stato-acoustic nuclear complex and the nucleus cerebelli of the frog: A Golgi study. Brain Behav. Evol. 10, 146–156 (1974)Google Scholar
  20. Gribenski, A., Caston, J.: Fibers projecting onto the crista ampullaris of the vertical anterior semicircular canal from other ipsilateral vestibular receptors in the frog (Rana esculenta). Pflügers Arch. 349, 257–265 (1974)Google Scholar
  21. Herrick, C.J.: Origin and evolution of the. cerebellum. Arch. Neurol. Psychiat. (Chic.) 11, 621–652 (1924)Google Scholar
  22. Hillman, D.E.: Light and electron microscopical study of the relationships between the cerebellum and the vestibular organ of the frog. Exp. Brain Res. 9, 1–15 (1969a)Google Scholar
  23. Hillman, D.E.: Morphological organization of frog cerebellar cortex: A light and electron microscope study. J. Neurophysiol. 32, 818–846 (1969b)Google Scholar
  24. Jansen, J., Brodal, A.: Aspects of Cerebellar Anatomy. Oslo: Johan Grundt Tanum 1954Google Scholar
  25. Larsell, O.: The cerebellum of the frog. J. comp. Neurol. 36, 89–112 (1923)Google Scholar
  26. Larsell, O.: The development of the cerebellum in the frog (hyla-regilla) in relation to the vestibular and lateral-line system. J. comp. Neurol. 39, 249–289 (1925)Google Scholar
  27. Larsell, O.: Morphogenesis and evolution of the cerebellum. Arch. Neurol. Psychiat. (Chic.) 31, 373–395 (1934)Google Scholar
  28. Lisberger, S.G., Fuchs, A.F.: Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res. 69, 347–353 (1974)Google Scholar
  29. Llinás, R., Bloedel, J.: Climbing fibre activation of Purkinje cells in the frog cerebellum. Brain Res. 3, 299–302 (1966)Google Scholar
  30. Llinás, R., Precht, W.: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain Res. 9, 16–29 (1969)Google Scholar
  31. Llinás, R., Bloedel, J.R., Hillman, D.E.: Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol. 32, 847–870 (1969)Google Scholar
  32. Llinás, R., Precht, W., Clarke, M.: Cerebellar Purkinje cell response to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13, 408–431 (1971)Google Scholar
  33. Llinás, R., Precht, W., Kitai, S.T.: Climbing fiber activation of Purkinje cell following primary vestibular afferent stimulation in the frog. Brain Res. 6, 371–375 (1967)Google Scholar
  34. Macadar, O., Wolfe, G.E., O'Leary, D.P., Segundo, J.P.: Response of the elasmobranch utricle to maintained spatial orientation, transitions and jitter. Exp. Brain Res. 22, 1–12 (1975)Google Scholar
  35. Maekawa, K., Takeda, T.: Mossy fibre responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Res. 98, 590–595 (1975)Google Scholar
  36. Magherini, P.C., Giretti, M.L., Precht, W.: Cerebellar control of vestibular neurons of the frog. Pflügers Arch. 356, 99–109 (1975)Google Scholar
  37. Markham, C.H., Curthoys, I.S.: Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. II. Electrical stimulation. Brain Res. 43, 383–396 (1972)Google Scholar
  38. Marini, G., Provini, L., Rosina, A.: Gravity responses of Purkinje cells in the nodulus. Exp. Brain Res. 24, 311–323 (1976)Google Scholar
  39. Mehler, W.R.: Comparative anatomy of the vestibular nuclear complex in submammalian vertebrates. In: Basic Aspects of Central Vestibular Mechanisms (eds. A. Brodai and O. Pompeiano). Progr. Brain Res. 37, 55–67 (1972)Google Scholar
  40. Miles, F.A., Fuller, J.H.: Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey. Brain Res. 80, 512–516 (1974)Google Scholar
  41. Nacimiento, A.C.: Spontaneous and evoked discharges of cerebellar Purkinje cells in the frog. In: Neurobiology of cerebellar evolution and development (ed. R. Llinás), pp. 273–289. Chicago: Amer. Med. Assoc. 1969Google Scholar
  42. Oscarsson, O.: Functional organization of spinocerebellar paths. In: Handbook of Sensory Physiology. Vol. II (ed. A. Iggo), pp. 339–380. Springer Berlin-Heidelberg-New York: 1973Google Scholar
  43. Precht, W., Llinás, R.: Functional organization of the vestibular afferents to the cerebellar cortex of the frog and cat. Exp. Brain Res. 9, 30–52 (1969a)Google Scholar
  44. Precht, W., Llinás, R.: Comparative aspects of the vestibular input to the cerebellum. In: Neurobiology of cerebellar evolution and development (ed. R. Llinás), pp. 677–702. Chicago: Amer. Med. Assoc. Educ. and Res. Fed. 1969bGoogle Scholar
  45. Precht, W., Llinás, R., Clarke, M.: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971)Google Scholar
  46. Precht, E., Volkind, R., Blanks, R.H.I.: Functional organization of the vestibular input to the anterior and posterior vermis of cat. Exp. Brain Res. 27, 143–160 (1977)Google Scholar
  47. Richter, A.: Antworten der Vestibulariskern-Neurone des Frosches bei natürlicher Labyrinthreizung. (Doctoral thesis), J.W. Goethe University, Frankfurt (F.R.G.) 1973Google Scholar
  48. Richter, A., Precht, W.: Responses of frog vestibular neurons to physiological stimulation of the labyrinth. Pflügers Arch.-PFLABK, Suppl. 335, R 79 (1972)Google Scholar
  49. Rushmer, D.S., Woodward, D.J.: Responses of Purkinje cells in the frog cerebellum to electrical and natural stimulation. Brain Res. 33, 324–335 (1971)Google Scholar
  50. Shinoda, Y., Yoshida, K.: Neural pathways from the vestibular labyrinths to the flocculus in the cat. Exp. Brain Res. 22, 97–111 (1975)Google Scholar
  51. Sotelo, C.: Stellate cells and their synapses on Purkinje cells in the frog. Brain Res. 17, 510–514 (1970)Google Scholar
  52. Thach, W.T.: Somatosensory receptive fields of single units in cat cerebellar cortex. J. Neurophysiol. 30, 675–696 (1967)Google Scholar
  53. Wilson, V.J., Anderson, J.A., Felix, D.: Semicircular canal input to pigeon vestibulocerebellum. Brain Res. 45, 230–235 (1972)Google Scholar
  54. Wilson, V.J., Anderson, J.A., Felix, D.: Unit and field potential activity evoked in the pigeon vestibulocerebellum by stimulation of individual semicircular canals. Exp. Brain Res. 19, 142–157 (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. H. I. Blanks
    • 1
  • W. Precht
    • 1
  • M. L. Giretti
    • 1
  1. 1.Neurobiologische AbteilungMax-Planck-Institut für HirnforschungFrankfurt/Main-NiederradFederal Republic of Germany

Personalised recommendations