Experimental Brain Research

, Volume 61, Issue 3, pp 469–481 | Cite as

Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus

  • C. Redies
  • J. M. Crook
  • O. D. Creutzfeldt


We investigated responses of neurones in cortical areas 17 and 18 and in the dorsal lateral geniculate nucleus (dLGN) of the cat to a phase shift in a moving line pattern forming a border without a luminance gradient (“subjective contour”). In both areas 17 and 18, S cells and B cells respond only slightly or not at all along the phase shift while C cells respond strongly. The response of C cells is strongest for line patterns with medium line separation and decreases with smaller and larger separation. In the dLGN the relative magnitude of neuronal responses along a phase shift is similar to that of C cells. However, C cells respond uniformly along the entire phase shift, whereas geniculate cells merely respond to individual line ends along the phase shift. In addition we compared responses along a phase shift and those to a luminance gradient formed by a dotted line whose dots were separated by the same distance as the line ends along the phase shift. S cells and B cells respond preferentially to dotted lines whereas C cells and geniculate cells respond equally well along both phase shifts and dotted lines. Possible explanations for these results in terms of receptive field structure and differences in inhibitory input to the cells are discussed. Differential neurone responses may account for the perceptual distinctness of the contours with and without luminance gradients.

Key words

Cat visual cortex Dorsal lateral geniculate nucleus Phase shift Border perception Subjective contour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker MF, Knopp J (1978) Processing of visual illusions in the frequency and spatial domains. Percept Psychophys 23: 521–526Google Scholar
  2. Creutzfeldt OD, Kuhnt U, Benevento LA (1974) An intracellular analysis of visual cortical neurones to moving stimuli: responses in a co-operative neuronal network. Exp Brain Res 21: 251–274Google Scholar
  3. Creutzfeldt OD, Nothdurft HC (1978) Representation of complex visual stimuli in the brain. Naturwissenschaften 65: 307–318Google Scholar
  4. Day RH, Jory MK (1978) Subjective contours, visual acuity, and line contrast. In: Armington JC, Krauskopf JE, Wooten B (eds) Visual psychophysics: its physiological basis. Academic Press, New York, pp 331–340Google Scholar
  5. Dean AF, Tolhurst DJ (1983) On the distinctness of simple and complex cells in the visual cortex of the cat. J Physiol 344: 305–325Google Scholar
  6. Ehrenstein W (1941) Über Abwandlungen der L. Hermannschen Helligkeitserscheinung. Z Psychol 150: 83–91Google Scholar
  7. Fukuda Y, Saito H (1972) Phasic and tonic cells in the cat's lateral geniculate nucleus. Tohoku J Exp Med 106: 209–210Google Scholar
  8. Ginsburg AP (1975) Is the illusory triangle physical or imaginary? Nature (London) 257: 219–220Google Scholar
  9. Gregory RL (1972) Cognitive contours. Nature (London) 238: 51–52Google Scholar
  10. Hammond P, MacKay DM (1977) Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp Brain Res 30: 275–296Google Scholar
  11. Henry GH (1977) Receptive field classes of cells in the striate cortex of the cat. Brain Res 133: 1–28Google Scholar
  12. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160: 106–154Google Scholar
  13. Kanizsa G (1974) Contours without gradients or cognitive contours? Ital J Psychol 1: 93–112Google Scholar
  14. Kanizsa G (1976) Subjective contours. Sci Am 234 (4): 48–52Google Scholar
  15. Kanizsa G (1979) Organization in vision. Essays on Gestalt perception. Praeger, New YorkGoogle Scholar
  16. Lawson RB, Gulick WL (1967) Stereopsis and anomalous contours. Vision Res 7: 271–297Google Scholar
  17. Nothdurft HC, Lee BB (1982) Responses to coloured patterns in the macaque lateral geniculate nucleus: pattern processing of single neurones. Exp Brain Res 48: 43–54Google Scholar
  18. Nothdurft HC, Li CY (1984) Representation of spatial details in textured patterns by cells of the cat striate cortex. Exp Brain Res 57: 9–21Google Scholar
  19. Orban GA, Kennedy H (1981) The influence of eccentricity on RF types and orientation selectivity in areas 17 and 18 of the cat. Brain Res 208: 203–208Google Scholar
  20. Redies C (1982) Zur Psychophysik und Neurophysiologie der Neontäuschung und verwandter Linienkontrast-Phänomene. Med Dissertation, Universität GöttingenGoogle Scholar
  21. Redies C, Spillmann L (1981) The neon color effect in the Ehrenstein illusion. Perception 10: 667–681Google Scholar
  22. Redies C, Spillmann L, Kunz K (1984) Colored neon flanks and line gap enhancement. Vision Res 24: 1301–1309Google Scholar
  23. Robson JG, Enroth-Cugell C (1978) Light distribution in the cat's retinal image. Vision Res 18: 159–173Google Scholar
  24. Schumann F (1900) Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten. Z Psychol 23: 1–27Google Scholar
  25. Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250: 305–329Google Scholar
  26. Van Tuijl HFJM (1975) A new visual illusion: neonlike color spreading and complementary color induction between subjective contours. Acta Psychol (Amsterdam) 39: 441–445Google Scholar
  27. Von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science (New York) 224: 1260–1262Google Scholar
  28. Wässle H, Creutzfeldt OD (1973) Spatial resolution in visual system: a theoretical and experimental study on single units in the cat's lateral geniculate body. J Neurophysiol 36: 13–27Google Scholar
  29. Zucker S (1983) Cooperative grouping and early orientation selection. In: Braddick O, Sleigh A (eds) Physical and biological processing of images. Springer, Berlin Heidelberg New York, pp 326–334Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • C. Redies
    • 1
  • J. M. Crook
    • 1
  • O. D. Creutzfeldt
    • 1
  1. 1.Abteilung NeurobiologieMax-Planck-Institut für biophysikalische ChemieGöttingenFederal Republic of Germany

Personalised recommendations