Advertisement

Experimental Brain Research

, Volume 42, Issue 3–4, pp 319–330 | Cite as

Efferent connections of the cingulate gyrus in the rhesus monkey

  • D. N. Pandya
  • G. W. Van Hoesen
  • M. -M. Mesulam
Article

Summary

Efferent cortical connections of the cingulate gyrus are investigated in rhesus monkey using autoradiographic technique. The results indicate that the rostralmost part of the cingulate gyrus (area 32) sends projections to the lateral prefrontal and midorbitofrontal cortex and to the rostral portion of the superior temporal gyrus. In contrast, the other two major subdivisions of the cingulate gyrus, areas 24 and 23, have widespread connections within the cortex. Area 24, for example, projects to the pre-motor region (areas 6 and 8), the fronto-orbital cortex (area 12), the rostral part of the inferior parietal lobule, the anterior insular cortex, the perirhinal area and the laterobasal nucleus of amygdala. Area 23, likewise, sends its connections to the dorsal prefrontal cortex (areas 9 and 10), the rostral orbital cortex (area 11), the parieto-temporal cortex (posterior part of the inferior parietal lobule and the superior temporal sulcus), the parahippocampal gyrus (areas TH and TF), the retrosplenial region and the presubiculum. It seems that the connections of the rostralmost part of the cingulate gyrus resemble the efferent cortical connectional patterns described for lateral prefrontal and orbito-frontal cortex, whereas the projections of areas 24 and 23 are directed to the neocortical, the paralimbic and the limbic areas.

Key words

Cingulate gyrus Cortical connections Limbic Paralimbic Neocortical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey WR, Meyer M (1952) An experimental study of hippocampal afferent pathways from prefrontal and cingulate areas in the monkey. J Anat 86: 58–74Google Scholar
  2. Baleydier C, Mauguiere F (1980) The duality of the cingulate gyrus in monkey; neuroanatomical study and functional hypothesis. Brain 103: 525–559Google Scholar
  3. Bignall KE, Imbert M (1969) Polysensory and cortico-cortical projections to frontal lobe of squirrel and rhesus monkeys. Electroencephalogr Clin Neurophysiol 26: 206–215Google Scholar
  4. Bonin G von, Bailey P (1947) The neocortex of macaca mulatta. University of Illinois Press, UrbanaGoogle Scholar
  5. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, LeipzigGoogle Scholar
  6. Chavis DA, Pandya DN (1976) Further observation on corticofrontal connections in rhesus monkey. Brain Res 117: 369–386Google Scholar
  7. Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37: 21–51Google Scholar
  8. Critchley M (1949) The phenomenon of tactile inattention with special reference to parietal lesions. Brain 72: 538–561Google Scholar
  9. Denny-Brown D, Chambers RA (1958) The parietal lobe and behavior. Res Publ Assoc Res Nerv Ment Dis 36: 35–117Google Scholar
  10. Denny-Brown D, Meyer JS, Horenstein S (1953) The significance of perceptual rivalry resulting from parietal lesions. Brain 75: 433–471Google Scholar
  11. Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178: 363–380Google Scholar
  12. Desiraju T (1976) Electrophysiology of frontal granular cortex. III. The cingulate-prefrontal relation in primate. Brain Res 109: 473–485Google Scholar
  13. Domesick VB (1969) Projections from the cingulate cortex in the rat. Brain Res 12: 296–320Google Scholar
  14. Domesick VB (1972) Thalamic relationships of the medial cortex in the rat. Brain Behav Evol 6: 457–483Google Scholar
  15. Economo CV, Koskinas GM (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, BerlinGoogle Scholar
  16. Eidelberg E, Schwartz AJ (1971) Experimental analysis of extinction phenomenon in monkey. Brain 94: 91–188Google Scholar
  17. Fallaice LA, Allen RP, McQueen JD, Northrup B (1971) Cognitive deficits from bilateral cingulotomy for intractable pain in man. Dis Nerv Syst 32: 171–175Google Scholar
  18. Fedio P, Ommaya AK (1970) Bilateral cingulum lesions and stimulation in man with lateralized impairment in short-term memory. Exp Neurol 29: 84–91Google Scholar
  19. Heilman KM, Pandya DN, Geschwind N (1970) Trimodal inattention following parietal lobe ablations. Trans Am Neurol Assoc 95: 259–261Google Scholar
  20. Jacobson S, Trojanowski JQ (1977) Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res 132: 209–233Google Scholar
  21. Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820PubMedGoogle Scholar
  22. Kaada BR, Pribram JA, Epstein J (1949) Respiratory and vascular responses in monkeys from temporal pole, insular, orbital surfaces and cingulate gyrus. J Neurophysiol 12: 347–356Google Scholar
  23. Kali KY (1973) Connections of the cingulate cortex in the cat. Doctoral DissertationGoogle Scholar
  24. Kemper TL, Wright SJ, Locke S (1972) Relationship between the septum and cingulate gyrus. J Comp Neurol 146: 465–478Google Scholar
  25. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172: 687–722Google Scholar
  26. Krieg WJS (1963) Connection of the cerebral cortex. Brain Books, Evanston, pp 5–374Google Scholar
  27. Larsons SJ (1962) The efferent connections of the cingulate gyrus in the magaque. Anat Rec 142: 251Google Scholar
  28. Locke S, Angevine JB, Yakovlev PI (1964) Thalamocortical projection of the lateral dorsal nucleus in cat and monkey. Arch Neurol 11: 1–12Google Scholar
  29. MacLean PD (1949) Psychosomatic disease and the ‘visceral brain”: recent developments bearing on the Papez theory of emotion. Psychosom Med 11: 338–353Google Scholar
  30. McLardy T (1971) Anticipatory recall deficit after cingulotomy in rats. Exp Neurol 32: 141–151Google Scholar
  31. Meibach RC, Siegel A. (1977) Subicular projections to the posterior cingulate cortex in rats. Exp Neurol 57: 264–270Google Scholar
  32. Mesulam MM, Geschwind N (1978) On the possible role of the neocortex and its connections in the process of attention and schizophrenia: clinical cases of inattention in man and experimental anatomy in monkey. J Psychiat Res 14: 249–259Google Scholar
  33. Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Res 136: 393–414Google Scholar
  34. Mufson EJ, Mesulam MM, Pandya DN (1979) Insular cortex and amygdala have reciprocal connections in the rhesus monkey. Soc Neurosci 5: 280Google Scholar
  35. Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat 95: 515–531Google Scholar
  36. Nauta WJH (1964) Some efferent connections of the prefrontal cortex in the monkey. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 397–409Google Scholar
  37. Nelson CN, Bignall KE (1973) Interactions of sensory and nonspecific thalamic inputs to cortical poly-sensory units in squirrel monkey. Exp Neurol 40: 189–206Google Scholar
  38. Niimi K, Niimi M, Okada Y (1978) Thalamic afferents to limbic cortex in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. Brain Res 154: 225–238Google Scholar
  39. Niki H, Watanabe M (1976) Cingulate unit activity and delayed response. Brain Res 110: 381–386Google Scholar
  40. Pandya DN, Domesick VB, Van Hoesen GW, Mesulam MM (1972) Projections of the cingulate gyms and cingulum in the rhesus monkey. Anat Rec 172: 379Google Scholar
  41. Pandya DN, Dye P, Butters N (1971) Efferent cortico-cortical projections of the prefrontal cortex in the rhesus monkey. Brain Res 31: 35–46Google Scholar
  42. Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13: 13–36Google Scholar
  43. Pandya DN, Van Hoesen GW, Mesulam MM (1979) The cortical projections of the cingulate gyrus in the rhesus monkey. Anat Rec 193: 643–644Google Scholar
  44. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38: 725–733Google Scholar
  45. Petras JM (1971) Connections of the parietal lobe. J Psychiatr Res 8: 189–201Google Scholar
  46. Petrides M, Iversen SD (1978) The effect of selective anterior and posterior association cortex lesions in the monkey performance of a visual-auditory compound discrimination test. Neuropsychologia 16: 527–537Google Scholar
  47. Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198: 315–317Google Scholar
  48. Sanides F (1972) Representation in the cerebral cortex and its areal lamination pattern. In: Bourne GH (ed) The structure and function of nervous tissue. Academic Press, New York, vol 5, pp 329–453Google Scholar
  49. Seltzer B, Pandya DN (1976) Some cortical projections to the parahippocampal area in the rhesus monkey. Exp Neurol 50: 146–160Google Scholar
  50. Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 1–24Google Scholar
  51. Seltzer B, Van Hoesen GW (1979) A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res 179: 157–161Google Scholar
  52. Shipley MT (1975) The topographic and laminar organization of the presubiculum's projection to the ipsi- and contralateral entorhinal cortex in the guinea pig. J Comp Neurol 160: 127–146Google Scholar
  53. Showers MJC (1959) The cingular gyrus: Additional motor area and cortical autonomie regulator. J Comp Neurol 112: 231–301Google Scholar
  54. Siegel A, Chabora J (1971) Effects of electrical stimulation of the cingulate gyrus upon attack behavior elicited from the hypothalamus in the cat. Brain Res 32: 169–177Google Scholar
  55. Simon EJ, Hiller JM (1978) In vitro studies on opiate receptors and their ligands. Fed Proc Am Soc Exp Biol 37: 141–146Google Scholar
  56. Talairach J, Bancaud F, Geir S, Borda-Ferrer M, Bonis A, Szikla G, Rush M (1973) The cingulate gyrus and human behavior. Electroencephalogr Clin Neurophysiol 34: 45–52Google Scholar
  57. Thomas GJ, Hostetter G, Baker DJ (1968) Behavioral function of the limbic system. Prog Physiol Psychol 2: 230–311Google Scholar
  58. Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95: 39–59Google Scholar
  59. Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175: 1471–1473Google Scholar
  60. Van Hoesen GW, Vogt BA, Pandya DN, McKenna T (1980) Compound stimulus differentiation following periacurate ablations in the rhesus monkey. Brain Res 168: 365–378Google Scholar
  61. Vogt BA (1976) Retrosplenial cortex in the rhesus monkey: a cytoarchitectonic and Golgi study. J Comp Neurol 1969: 63–98Google Scholar
  62. Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior and posterior cingulate cortex in the monkey. Science 204: 205–207Google Scholar
  63. Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73: 59–86Google Scholar
  64. Ward AA (1948) The angular gyrus; Area 24. J Neurophysiol 11: 13–23Google Scholar
  65. Watson RT, Heilman KM, Cauthen JC, King FA (1973) Neglect after cingulectomy. Neurology (Minneap) 23: 1003–1007Google Scholar
  66. Welch K, Stuteville P (1958) Experimental production of unilateral neglect in monkeys. Brain 8: 342–347Google Scholar
  67. Whitty CWM (1966) Some early and transient changes in psychological function after anterior cingulatomy in man. Int J Neurol 3: 413–490Google Scholar
  68. Yakovlev PI, Locke S (1961) Limbic nuclei of the thalamus and connections of limic cortex. III. Corticocortical connections of the anterior cingulate gyrus, the cingulum, and the subcallosal bundle in monkey. Arch Neurol 5: 364–400Google Scholar
  69. Yakovlev PI, Locke S, Koskoff DY, Patton RA (1960) Limbic nuclei of the thalamus and connections of limbic cortex. I. Organization of the projections of the anterior group of nuclei and of the midline nuclei of the thalamus to the anterior cingulate gyrus and hippocampal rudiment in the monkey. Arch Neurol 3: 620–641Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • D. N. Pandya
    • 1
    • 2
  • G. W. Van Hoesen
    • 1
    • 2
  • M. -M. Mesulam
    • 1
    • 2
  1. 1.Edith Nourse Rogers Memorial Veterans HospitalBedfordUSA
  2. 2.Bullard and Denny-Brown Laboratories, Harvard Neurological UnitBeth Israel HospitalBostonUSA

Personalised recommendations