Advertisement

Experimental Brain Research

, Volume 28, Issue 1–2, pp 189–209 | Cite as

Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses

  • M. Palkovits
  • Éva Mezey
  • J. Hámori
  • J. Szentágothai
Article

Summary

The tissue volume, cell number, cell density, as well as the numbers and densities of various kinds of synaptic terminals were determined in the cerebellar nuclei of adult cats by means of stereological procedures both on the light and electron microscopic levels. The total number of the cerebellar nuclear cells was found to be 4.6×104. On the basis of karyometric studies the medial and interpositus nuclei appear to contain two, the lateral nucleus probably three different neuron populations. The over-all numerical ratio between Purkinje and nuclear cells is 26:1.

On the basis of simplified cytological and size criteria five different types of synaptic terminals were distinguished and counted separately. The total number of synaptic boutons was found to be 9.2×108, 62% of which (5.7×108) belong to Purkinje axons. The average number of synaptic boutons per nuclear cell is 2×104 with systematic differences in the several nuclei (medial = 27500; interpositus = 18000; lateral = 13900). The number of boutons of Purkinje cell origin is 11600 per nuclear cell, on the average.

The average number of synaptic boutons per Purkinje axon is 474, which are distributed in a space of about 13.5×106 μm3. In view of the density of the nuclear cells and the metric parameters of their dendrites, the number of nuclear cells with which synapses might be established is 35. This is a direct measure for the divergence; i.e. one Purkinje axon may reach potentially 35 nuclear cells. The number on any nuclear cell of boutons that originate from the same Purkinje axon would be mathematically 13.5 as an average, but may vary excessively between 1 and around 50 boutons. From these data the probable convergence of Purkinje axons upon nuclear cells can be deduced as being numerically somewhere around 860, however, this apparently excessive value is mitigated by the Golgi observation that a single Purkinje axon may contribute to the same nuclear cell as many as 50 somatic synapses. The dendritic synapses — forming the vast majority of all contacts — are probably more evenly distributed among the great majority of the converging Purkinje axons but with correspondingly fewer individual contacts.

Key words

Cerebellar nuclei, cat Quantitative histology Numerical connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, K.H.: Über die Feinstruktur besonderer Einrichtungen in markhaltigen Nervenfasern des Kleinhirn der Ratte. Z. Zellforsch. 65, 701–712 (1965)Google Scholar
  2. Angaut, P., Sotelo, C.: The fine structure of the cerebellar nuclei in the cat. II. Synaptic organization. Exp. Brain Res. 16, 431–452 (1965)Google Scholar
  3. Cajal, S. Ramón y.: Histologie du Système Nerveux de l'Homme et des Vertébrés. Vol. 2. Paris: Maloine 1911Google Scholar
  4. Chalkley, H.W.: Methods for the quantitative morphologic analysis of the tissues. J. nat. Cancer Inst. 4, 47–53 (1943)Google Scholar
  5. Chan-Palay, V.: Afferent axons and their relations with neurones in the nucleus lateralis of the cerebellum: A light microscopic study. Z. Anat. Entwickl.-Gesch. 142, 1–21 (1973a)Google Scholar
  6. Chan-Palay, V.: On the identification of the afferent axon terminals in the nucleus lateralis of the cerebellum: an electron microscope study. Z. Anat. Entwickl.-Gesch. 142, 149–186 (1973b)Google Scholar
  7. Chan-Palay, V.: Axon terminals of the intrinsic neurons in the nucleus lateralis of the cerebellum. An electron microscope study. Z. Anat. Entwickl.-Gesch. 142, 187–206 (1973c)Google Scholar
  8. Chan-Palay, V.: On certain fluorescent axon terminals containing granular synaptic vesicles in the cerebellar nucleus lateralis. Z. Anat. Entwickl.-Gesch. 142, 239–258 (1973d)Google Scholar
  9. Delesse, A.: Pour détermine la composition des roches. Ann. des Mines 13, 379–388 (1948)Google Scholar
  10. Eager, R.P.: Some fine structural features of the neural elements composing the cerebellar nuclei in the cat. J. comp. Neurol. 132, 235–262 (1968)Google Scholar
  11. Floderus, S.: Untersuchungen über den Bau der menschlichen Hypophyse mit besonderer Berücksichtigung der quantitativen mikromorphologischen Verhältnisse. Acta path. microbiol. scand. Suppl. 53, 276 (1944)Google Scholar
  12. Hámori, J., Szentágothai, J.: Identification of synapses formed in the cerebellar cortex by Purkinje axon collaterals: An electron microscope study. Exp. Brain Res. 5, 115–128 (1968)Google Scholar
  13. Jansen, J., Brodal, A.: Experimental studies on the intrinsic fibres of the cerebellum. II. The cortico-nuclear projection. J. comp. Neurol. 73, 267–321 (1940)Google Scholar
  14. Jansen, A., Brodal, A.: Experimental studies on the intrinsic fibres of the cerebellum. III. Cortico-nuclear projection in the rabbit and the monkey. Norske Vid. Akad. Arh. 1 Math. Nat. Kl. 3, 1–30 (1942)Google Scholar
  15. Matsushita, M., Iwahori, N.: Structural organization of the fastigial nucleus. I. Dendrites and axonal Pathways. Brain Res. 25, 597–610 (1971)Google Scholar
  16. Kohno, K.: Neurotubules contained within the dendrite and axon of Purkinje cell of frog. Bull. Tokyo med. dent. Univ. 2, 411–442 (1964)Google Scholar
  17. O'Leary, J., Smith, J.M., Inukai, J., Mejia, H.H.: Architectonics of the cerebellar nuclei in the rabbit. J. comp. Neurol. 144, 399–428 (1972)Google Scholar
  18. Oscarsson, O.: The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fibre system. In: Neurobiology of Cerebellar Evolution and Development (Proceedings of the First International Symposium of the Institute for Biomedical Research, American Medical Association/Education and Resarch Foundation) (ed. R. Llinás), pp. 525–537. Chicago: Amer. Med. Ass. 1969Google Scholar
  19. Oscarsson, O.: Functional organization of spinocerebellar path. In: Handbook of Sensory Physiology, Vol. II. Somatosensory System (ed. A. Iggo), pp. 339–380. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  20. Palkovits, M.: Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59, 449–450 (1973)Google Scholar
  21. Palkovits, M.: Determination of axon terminal density in the central nervous system. Brain Res. 108, 413–417 (1976)Google Scholar
  22. Palkovits, M., Csapó, S.: Mikroprojections-Messtisch für die Vereinfachung von Kernvariations-Untersuchungen. Z. mikr.-anat. Forsch. 67, 339–342 (1961)Google Scholar
  23. Palkovits, M., Fischer, J.: Karyometric Investigations, pp. 347. Budapest: Akadémiai Kiadó 1968Google Scholar
  24. Palkovits, M., Magyar, P., Szentágothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of Purkinje cells. Brain Res. 32, 1–13 (1971a)Google Scholar
  25. Palkovits, M., Magyar, P., Szentágothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res. 32, 15–30 (1971b)Google Scholar
  26. Palkovits, M., Magyar, P., Szentágothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res. 34, 1–18 (1971c)Google Scholar
  27. Palkovits, M., Magyar, P., Szentágothai, J.: Quantitative histological analysis of the cerebellar cortex in the cat. IV. Mossy fiber — Purkinje cell numerical transfer. Brain Res. 45, 15–29 (1972)Google Scholar
  28. Pellionisz, A., Szentágothai, J.: Dynamic single unit simulation of a realistic cerebellar network model. Brain Res. 49, 83–99 (1973)Google Scholar
  29. Pellionisz, A., Szentágothai, J.: Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems. Brain Res. 68, 19–40 (1974)Google Scholar
  30. Saltykov, S.A.: The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections. In: Stereology (ed. H. Elias), pp. 163–173. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  31. Sotelo, C., Angaut, P.: The fine structure of the cerebellar central nuclei in the cat. I. The ultrastructure of the cerebellar nuclei. Exp. Brain Res. 16, 410–430 (1973)Google Scholar
  32. Szentágothai, J., Arbib, M.A.: Conceptual Models of Neural Organization. Neurosciences Research Program Bulletin 12, 305–510 (1974)Google Scholar
  33. Underwood, E.E.: Quantitative Stereology, pp. 274. Reading, Mass.: Addison-Wesley 1970Google Scholar
  34. Voogd, J.: The importance of fibre connections in the comparative anatomy of the mammalian cerebellum. In: Neurobiology of Cerebellar Evolution and Development (Proceedings of the First International Symposium of the Institute for Biomedical Research, American Medical Association/Education and Research Foundation) (ed. R. Llinás), pp. 493–514. Chicago: Amer. Med. Ass. 1969Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. Palkovits
    • 1
  • Éva Mezey
    • 1
  • J. Hámori
    • 1
  • J. Szentágothai
    • 1
  1. 1.First Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations