Experimental Brain Research

, Volume 37, Issue 3, pp 495–510 | Cite as

An estimation and application of the human cortical magnification factor

  • J. Rovamo
  • V. Virsu
Original Articles


Comparisons of the published data on the density D of receptive fields of retinal ganglion cells and on the cortical magnification factor M indicated that M2 is directly proportional to D in primates. Therefore, the human M can be estimated for the principal meridians of the visual field from the density-distribution of retinal ganglion cells and from the density of the centralmost cones. Using the previously published empirical data, we estimated the values of the human M and express the values in four simple equations that can be used for finding the value of M for any location of the visual field. The monocular values of M are not radially symmetric.

These analytically expressed values of M make it possible to predict contrast sensitivity and resolution for any location of the visual field. We measured contrast sensitivity functions at 25 different locations and found that the functions could be made similar by scaling the retinal dimensions of test gratings by the inverse values of M. Visual acuity and resolution could be predicted accurately for all retinal locations by means of a single constant multiplier of the estimated M.

The results indicate that the functional and structural properties of the visual system are very closely and similarly related across the whole retina. Visual acuity, e.g., bears the same optimal relation to the density of sampling executed by retinal ganglion cells at all locations of the visual field.

Key words

Cortical magnification factor Man Visual resolution Contrast sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus, K.: A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp. Brain Res. 24, 159–179 (1975)Google Scholar
  2. Allman, M.J., Kaas, J.H.: Representation of the visual field in striate and adjoining cortex of the owl monkey (aotus trivirgatus). Brain Res. 35, 89–106 (1971)Google Scholar
  3. Brindley, G.S., Lewin, W.S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.) 196, 479–493 (1968)Google Scholar
  4. Campbell, F.W., Green, D.G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965)Google Scholar
  5. Clark, W.E., Le Gros: The laminar organization and cell content of the lateral geniculate body in the monkey. J. Anat. 75, 419–433 (1941)Google Scholar
  6. Cowey, A., Rolls, E.T.: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447–454 (1974)Google Scholar
  7. Creutzfeldt, O.D., Kuhnt, U., Benevento, L.A.: An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a co-operative neuronal network. Exp. Brain Res. 21, 251–274 (1974)Google Scholar
  8. Daniel, P.M., Whitteridge, W.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961)Google Scholar
  9. Drasdo, N.: The neural representation of visual space. Nature 266, 554–556 (1977)Google Scholar
  10. Drasdo, N., Fowler, C.W.: Non-linear projection of the retinal image in a wide-angle schematic eye. Br. J. Ophthal. 58, 709–714 (1974)Google Scholar
  11. Filimonoff, I.N.: Über die Variabilität der Groβhirnrindenstruktur. II. Regio occipitalis beim erwachsenen Menschen. J. Physiol. Neurol. (Lpz.) 44, 1–96 (1932)Google Scholar
  12. Green, D.G.: Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. (Lond.) 207, 351–356 (1970)Google Scholar
  13. Guld, C., Bertulis, A.: Representation of fovea in the striate cortex of vervet monkey, cercopithecus aethiops pygerythrus. Vision Res. 16, 629–631 (1976)Google Scholar
  14. Harvey, L.O., Jr., Pöppel, E.: Contrast sensitivity of the human retina. Am. J. Optom. 49, 748–753 (1972)Google Scholar
  15. Hubel, D.H., Freeman, D.C.: Projection into the visual field of ocular dominance columns in macaque monkey. Brain Res. 122, 336–343 (1977)Google Scholar
  16. Hubel, D.H., Wiesel, T.N.: Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–305 (1974)Google Scholar
  17. Hughes, A.: The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Handbook of Sensory Physiology, Crescitelli, F. (ed.). Vol. VII/5, pp. 613–756. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  18. Hughes, A.: The neural representation of visual space. Nature 276, 422 (1978)Google Scholar
  19. Koenderink, J.J., Bouman, M.A., Bueno de Mesquita, A.E., Slappendel, S.: Perimetry of contrast detection thresholds of moving spatial sine wave patterns, III. The target extent as a sensitivity controlling parameter. J. Opt. Soc. Am. 68, 854–860 (1978)Google Scholar
  20. Lee, B.B., Cleland, B.G., Creutzfeldt, O.D.: The retinal input to cells in area 17 of the cat's cortex. Exp. Brain Res. 30, 527–538 (1977)Google Scholar
  21. Levick, W.R., Cleland, B.G., Dubin, M.W.: Lateral geniculate neurons of cat: Retinal inputs and physiology. Invest. Ophthal. 11, 302–311 (1972)Google Scholar
  22. Malpeli, J.G., Baker, F.H.: The representation of the visual field in the lateral geniculate nucleus of macaca mulatta. J. Comp. Neurol. 161, 569–594 (1975)Google Scholar
  23. Missotten, L.: Estimation of the ratio of cones to neurons in the fovea of the human retina. Invest. Ophthal. 13, 1045–1049 (1974)Google Scholar
  24. Myerson, J., Manis, P.B., Miezin, F.M., Allman, J.M.: Magnification in striate cortex and retinal ganglion cell layer of owl monkey: A quantitative comparison. Science 198, 855–857 (1977)Google Scholar
  25. Ogden, T.E.: The morphology of retinal neurons of the owl monkey aotes. J. Comp. Neurol. 153, 399–428 (1974)Google Scholar
  26. Oppel, O.: Untersuchungen über die Verteilung und Zahl der retinalen Ganglienzellen beim Menschen. Graefes Arch. Klin. Exp. Ophthal. 172, 1–22 (1967)Google Scholar
  27. Österberg, G.: Topography of the layer of rods and cones in the human retina. Acta Ophthal. (Suppl.) 6, 11–97 (1935)Google Scholar
  28. Polyak, S.: The vertebrate visual system. Chicago: University of Chicago Press 1957Google Scholar
  29. Potts, A.M., Hodges, D., Shelman, C.B., Fritz, K.J., Levy, N.S., Mangall, Y.: Morphology of the primate optic nerve. I. Method and total fibre count. Invest. Ophthal. 11, 980–988 (1972)Google Scholar
  30. Rolls, E.T., Cowey, A.: Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res. 10, 298–310 (1970)Google Scholar
  31. Rovamo, J., Virsu, V., Näsänen, R.: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978)Google Scholar
  32. Singer, W., Creutzfeldt, O.D.: Reciprocal lateral inhibition of on-and off-center neurones in the lateral geniculate body of the cat. Exp. Brain Res. 10, 311–330 (1970)Google Scholar
  33. Stensaas, S.S., Eddington, D.K., Dobelle, W.H.: The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747–755 (1974)Google Scholar
  34. Talbot, S.A., Marshall, W.H.: Physiological studies on neural mechanisms of visual localization and discrimination. Am. J. Ophthal. 24, 1255–1264 (1941)Google Scholar
  35. Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177, 213–236 (1978)Google Scholar
  36. Van Buren, J.M.: The retinal ganglion cell layer. Springfield: Thomas 1963Google Scholar
  37. Virsu, V., Rovamo, J.: Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 37, 1–16 (1979)Google Scholar
  38. Vos, J.J., Walraven, J., Meeteren, A. van: Light profiles of the foveal image of a point source. Vision Res. 16, 215–219 (1976)Google Scholar
  39. Webb, S.V., Kaas, J.H.: The sizes and distribution of ganglion cells in the retina of the owl monkey, aotus trivirgatus. Vision Res. 16, 1247–1254 (1976)Google Scholar
  40. Weymouth, F.W.: Visual sensory units and the minimal angle of resolution. Am. J. Ophthal. 46, 102–113 (1958)Google Scholar
  41. Wertheim, T.: Über die indirekte Sehschärfe. Z. Psychol. Physiol. Sinnesorg. 7, 172–187 (1894)Google Scholar
  42. Whitteridge, D., Daniel, P.M.: The representation of the visual field on the calcarine cortex. In: The visual system: Neurophysiology and psychophysics, Jung, R., Kornhuber, H. (eds.). Berlin, Göttingen, Heidelberg: Springer 1961Google Scholar
  43. Wilson, J.R., Sherman, S.M.: Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. J. Neurophysiol. 39, 512–533 (1976)Google Scholar
  44. Zeki, S.M.: Functional specialization in the visual cortex of the rhesus monkey. Nature 274, 423–428 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. Rovamo
    • 1
  • V. Virsu
    • 2
  1. 1.Institute of PhysiologyUniversity of HelsinkiHelsinki 17Finland
  2. 2.Department of General PsychologyUniversity of HelsinkiHelsinki 17Finland

Personalised recommendations