Experimental Brain Research

, Volume 2, Issue 3, pp 191–215

Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods

  • Jacques Courville
Article

Summary

Small lesions were done in various areas of the nucleus interpositus anterior (NIA) of the cerebellum, and the distribution of terminal degeneration was studied in the red nucleus with the methods of Nauta and Glees. The NIA projects to the contralateral red nucleus. Two principles of organization can be demonstrated in the projection: a caudorostral arrangement in the red nucleus corresponds to a mediolateral organization in the NIA and a mediolateral arrangement in the red nucleus corresponds to a caudorostral organization of the NIA. The latter distribution coincides with the somatotopical areas of the red nucleus defined by Pompeiano and Brodal (1957). Special attention has been paid to the questions of the subdivision of the cerebellar nuclei and of the course of the fibres issuing from the nuclei in the cerebellar hilus. The present findings on the projection of the NIA to the red nucleus have been correlated with recent anatomical and physiological data on the cerebellum and the red nucleus.

Key words

Cerebellum Nucleus interpositus anterior Red nucleus Somatotopy Degeneration study 

Abbreviations

BC

brachium conjunctivum

c

caudal

d

dorsal

Ext

extensor effects

Flex

flexor effects

forel

forelimb area

HB

hook-bundle

Hb. P

habenulo-peduncular tract

hindl

hindlimb area

I

lateral

m

medial

NF

nucleus fastigii or medialis

NIA

nucleus interpositus anterior

NIP

nucleus interpositus posterior

NL

nucleus lateralis

r

rostral

v

ventral

III

root fibres of the third nerve

IV

fourth ventricle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, W.F.: Distribution of the fibers originating of the different cerebellar nuclei. J. comp. Neurol. 36, 399–439 (1924).Google Scholar
  2. Angaut, P., and D. Bowsher: Efferent projections of cerebellar nuclei in cat. Abstracts of the 8th international congress of anatomists. Wiesbaden 1965.Google Scholar
  3. Brodal, A.: Modification of Gudden method for study of cerebral localization. Arch. Neurol. (Chic.) 43, 46–58 (1940).Google Scholar
  4. —, and A.C. Gogstad: Rubro-cerebellar connections. Anat. Rec. 118, 455–486 (1954).Google Scholar
  5. Brunner, H.: Die zentrale Kleinhirnkerne bei den Säugetieren. Arb. neurol. Inst. Univ. Wien 22, 200–272 (1919).Google Scholar
  6. Cajal, S.R.: Apuntes para el estudio del bulbo raquídeo: III, Núcleo rojo y región de la calota. An. Soc. esp. Hist. nat. p. 100 (1895). Cited from Cajal 1911.Google Scholar
  7. —: Histologie du système nerveux de l'homme et des vertébrés. Vol. II. Paris: Maloine 1911.Google Scholar
  8. Carpenter, M.B., and H.R. Nova: Descending division of the brachium conjunctivum in the cat: a cerebello-reticular system. J. comp. Neurol. 114, 295–305 (1960).Google Scholar
  9. —, and G.H. Stevens: Structural and functional relationships between the deep cerebellar nuclei and the brachium conjunctivum in the rhesus monkey. J. comp. Neurol. 107, 109–152 (1957).Google Scholar
  10. Carrea, R.M.E., and F.A. Mettler: The anatomy of the primate brachium conjunctivum and associated structures. J. comp. Neurol. 101, 565–690 (1954).Google Scholar
  11. Chambers, W.W., and J.M. Sprague: Functional localization in the cerebellum. I. Organization in longitudinal corticonuclear zones and their contribution to the control of posture both extrapyramidal and pyramidal. J. comp. Neurol. 103, 105–129 (1955a).Google Scholar
  12. —, J.M. Sprague: Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Arch. Neurol. Psychiat. (Chic.) 74, 653–680 (1955b).Google Scholar
  13. Cohen, D., W.W. Chambers and J.M. Sprague: Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. J. comp. Neurol. 109, 233–259 (1958).Google Scholar
  14. Combs, C.M.: Electroanatomical study of cerebellar localization: Stimulation of various afferents. J. Neurophysiol. 17, 123–143 (1954).Google Scholar
  15. Courville, J., and A. Brodal: Rubrocerebellar connections in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 126, 471–486 (1966).Google Scholar
  16. Dow, R.S., and G. Moruzzi: The Physiology and Pathology of the Cerebellum. Minneapolis: The University of Minnesota Press 1958.Google Scholar
  17. Eager, R. P.: Efferent cortico-nuclear pathways in the cerebellum of the cat. J. comp. Neurol. 120, 81–104 (1963).Google Scholar
  18. Flood, S., and J. Jansen: On the cerebellar nuclei in the cat. Acta anat. (Basel) 46, 52–72 (1961).Google Scholar
  19. Foltz, F.M., and H.A. Matzke: An experimental study on the origin, course and termination of the cerebellifugal fibers in the opossum. J. comp. Neurol. 114, 107–126 (1960).Google Scholar
  20. Glees, P.: Terminal degeneration within the central nervous system as studied by a new silver method. J. Neuropath. exp. Neurol. 5, 54–59 (1946).Google Scholar
  21. —, and W.J.H. Nauta: A critical review of studies on axonal and terminal degeneration. Mschr. Psychiat. Neurol. 129, 74–91 (1955).Google Scholar
  22. Grant, G.: Projection of the external cuneate nucleus onto the cerebellum in the cat: An experimental study using silver methods. Exp. Neurol. 5, 179–195 (1962a).Google Scholar
  23. —: Spinal course and somatotopically organized termination of the spinocerebellar tracts. An experimental study in the cat. Acta physiol. scand. 56, Suppl. 193, 1–45 (1962b).Google Scholar
  24. Jansen, J.: Efferent cerebellar connections. In: Aspects of Cerebellar Anatomy, pp. 189–248. Eds. J. Jansen and A. Brodal. Oslo: Johan Grundt Tanum 1954.Google Scholar
  25. —, and A. Brodal: Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. J. comp. Neurol. 73, 267–321 (1940).Google Scholar
  26. —, and A. Brodal: Experimental studies on the intrinsic fibers of the cerebellum. III. Cortico-nuclear projection in the rabbit and the monkey. Norske Vid. Akad. Avh. 1, Math. Nat. Kl., No. 3, 1–30 (1942).Google Scholar
  27. —, and A. Brodal: Aspects of Cerebellar Anatomy. Eds. J. Jansen and A. Brodal. Oslo: Johan Grundt Tanum 1954.Google Scholar
  28. —, and A. Brodal: Das Kleinhirn. In: v. Möllendorff's Handbuch der mikroskopischen Anatomie des Mensehen IV/8. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  29. —, and J. Jansen, Jr.: On the efferent fibers of the cerebellar nuclei in cat. J. comp. Neurol. 102, 607–632 (1955).Google Scholar
  30. Larsell, O.: The cerebellum of the cat and the monkey. J. comp. Neurol. 99, 135–200 (1953).Google Scholar
  31. McMasters, R.E., and G.V. Russell: Efferent pathways from the deep cerebellar nuclei of the cat. J. comp. Neurol. 110, 205–220 (1958).Google Scholar
  32. Maffei, L., and O. Pompeiano: Cerebellar control of flexor motoneurons. Arch. ital. Biol. 100, 476–509 (1962a).Google Scholar
  33. —: Effects of stimulation of the mesencephalic tegmentum following interruption of the rubrospinal tract. Arch. ital. Biol. 100, 510–525 (1962b).Google Scholar
  34. Martin, P.: Handbuch der Anatomie der Hausthieren von scFrank. 3. Aufl., ergänztvon P. Martin. Stuttgart 1892. Zit. nach Cajal 1911.Google Scholar
  35. Massion, J.: Contribution a l'étude de la régulation cérébelleuse du systéme extrapyramidal. Controle réflexe et tonique de la voie rubro-spinale par le cervelet. Arscia: Bruxelles 1961. 206 pp.Google Scholar
  36. Mehler, W.R., V.G. Vernier and W.J.H. Nauta: Efferent projections from dentate and interpositus nuclei in primates. Anat. Rec. 130, 430 (1958).Google Scholar
  37. Nauta, W.J.H.: Silver impregnation of degenerating axons. In: New Research Techniques of Neuroanatomy, pp. 17–26. Ed. W.F. Windle. Springfield, Ill.: C.C. Thomas 1957.Google Scholar
  38. Nyberg-Hansen, R.: Sites and mode of termination of reticulo-spinal fibers in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 124, 71–100 (1965).Google Scholar
  39. —, and A. Brodal: Sites and mode of termination of rubrospinal fibres in the cat. J. Anat. (Lond.) 98, 235–253 (1964).Google Scholar
  40. Ogawa, T.: Beiträge zur vergleichenden Anatomie des Zentralnervensystems der Wassersäugetiere. Über die Kleinhirnkerne der Pinnipedien und Cetaceen. Arb. anat. Inst. Sendai 17, 63–136 (1935). Zit. nach Voogd 1964.Google Scholar
  41. Ohkawa, K.: Comparative anatomical studies of cerebellar nuclei of mammals. Arch. Hist. Jap. 13, 21–58 (1957). Cited from Voogd 1964.Google Scholar
  42. Oscarsson, O.: Functional organization of the spino- and cuneocerebellar tracts. Physiol. Rev. 45, 495–522 (1965).Google Scholar
  43. Pompeiano, O.: Analisi degli effeti della stimolazione elettrica del nucleo rosso nel gatto decerebrato. Rend. Acad. naz. Lincei, Cl. Sci. fis. mat. nat. Ser. VIII 22, 100–103 (1957).Google Scholar
  44. —: Responses to electrical stimulation of the intermediate part of the cerebellar anterior lobe in the decerebrate cat. Arch. ital. Biol. 96, 330–360 (1958).Google Scholar
  45. —: Organizzazione somatotopica delle riposte flessorie alla stimolazione elettrica del nucleo interposito nel gatto decerebrato. Arch. Sci. biol. (Bologna) 43, 163–176 (1959).Google Scholar
  46. —: Localizzazione delle riposte estensorie alla stimolazione elettrica del nucleo interposito nel gatto decerebrato. Arch. Sci. biol. (Bologna) 44, 473–496 (1960).Google Scholar
  47. —, and A. Brodal: Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. J. comp. Neurol. 108, 225–251 (1957).Google Scholar
  48. Rand, R.W.: Anatomical and experimental study of the cerebellar nuclei and their efferent projections in the monkey. J. comp. Neurol. 101, 167–224 (1954).Google Scholar
  49. Rasmussen, A.T.: Origin and course of the fasciculus uncinatus (Russell) in the cat with observations on other fiber tracts originating from the cerebellar nuclei. J. comp. Neurol. 57, 156–197 (1933).Google Scholar
  50. Rinvik, E., and F. Walberg: Demonstration of a somatotopically arranged corticorubral projection in the cat. J. comp. Neurol. 120, 393–407 (1963).Google Scholar
  51. Rossi, G.F., and A. Brodal: Corticofugal fibres to the brain stem reticular formation. An experimental study in the cat. J. Anat. (Lond.) 90, 42–62 (1956).Google Scholar
  52. Rüdeberg, S.-I.: Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. (Diss.). Lund, Sweden 1961.Google Scholar
  53. Snider, R.S.: Morphology of the cerebellar nuclei in the rabbit and cat. J. comp. Neurol. 72, 399–415 (1940).Google Scholar
  54. Voogd, J.: The Cerebellum of the Cat. Structure and Fibre Connexions. Leiden: Van Gorcum & Comp. 1964.Google Scholar
  55. Walberg, F.: Descending connections to the inferior olive. An experimental study in the cat. J. comp. Neurol. 104, 77–173 (1956).Google Scholar
  56. —, and J. Jansen: Cerebellar corticovestibular fibers. An experimental study in the cat. Exp. Neurol. 3, 32–52 (1961).Google Scholar
  57. —: Cerebellar corticonuclear projection studied experimentally with silver impregnation methods. J. Hirnforsch. 6, 338–354 (1964).Google Scholar
  58. —, O. Pompeiano, A. Brodal and J. Jansen: The fastigiovestibula projection in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 118, 49–76 (1962).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Jacques Courville
    • 1
  1. 1.Anatomical InstituteUniversity of OsloOsloNorway
  2. 2.Department of Neurology and Neurosurgery and Department of AnatomyMc-Gill UniversityMontreal

Personalised recommendations