Experimental Brain Research

, Volume 62, Issue 3, pp 515–527 | Cite as

The olfactory tubercle of the cat I. Morphological components

  • Gundela Meyer
  • Petra Wahle


On the basis of morphology and arrangement of cell types, the olfactory tubercle (OT) of the cat is divided into two main components: a cortical part and the cap/hilus regions in which cortical characteristics are not recognizable. The cortical part undergoes a gradual transformation from a more cortex-like structure in the lateral half of the OT — possibly related to the presence of olfactory fibers — to a more striatum-like organization in the medial half. Cell bridges extend between the polymorph layer of the cortical part and the striatum and especially the n. accumbens. The cap regons form 8 or 9 superficial grooves running in a rostro-caudal direction. They contain dwarf and small pyramidallike neurons and lie immediately ventral to the granule islands of Calleja. Dwarf and small pyramidal-like neurons give rise to an ascending axonal plexus which may contact large neurons in the hilus regions dorsal to the Calleja islands and in part also neurons of the ventral pallidum, the dendrites of which enter the lateral hilus zones. The proportion of dwarf cells to granule cells in the cap regions gradually reverses from lateral, where dwarf cells dominate, to medial, where the caps contain almost exclusively granule cells. No interconnections are observed between the two components of the OT.

Key words

Cat olfactory tubercle Neuronal types Compartmentation Golgi method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolam JP, Somogyi P, Totterdell S (1981) A second type of striatonigral neuron: a comparison between retrogradely labelled and Golgi-stained neurons at the light and electron microscopic levels. Neuroscience 6: 2141–2157Google Scholar
  2. Cajal SRY (1911) Histologie du système nerveux de l'homme et des vertébrales, Vol 2. Maloine, ParisGoogle Scholar
  3. Chang HT, Kitai ST (1982) Large neostriatal neurons in the rat: an electron microscopic study of gold-toned Golgi-stained cells. Brain Res Bull 8: 631–643Google Scholar
  4. Economo C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien BerlinGoogle Scholar
  5. Fallon JH (1983) The islands of Calleja complex of rat basal forebrain. II. Connections of medium and large sized cells. Brain Res Bul 10: 775–793Google Scholar
  6. Fallon JH, Ribak CE (1980) Multiple neurotransmitter studies in the islands of Calleja complex of the basal forebrain. III. Connections, correlations and reservations. Soc Neurosci Abstr 6: 114Google Scholar
  7. Fallon JH, Loughlin SE, Ribak CE (1983) The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatal-pallidal system. J Comp Neurol 218: 91–120Google Scholar
  8. Fallon JH, Riley JN, Sipe JC, Moore RY (1978) The islands of Calleja: organization and connections. J Comp Neurol 181: 375–396Google Scholar
  9. Fox CA (1940) Certain basal telencephalic centers in the cat. J Comp Neurol 72: 1–62Google Scholar
  10. Fox CA, Andrade AN, Luqui IJ, Rafols JA (1974) The primate globus pallidus: a Golgiand electron microscopic study. J Hirnforsch 15: 75–93Google Scholar
  11. Fox CA, Andrade AN, Schwyn RC, Rafols JA (1971) The aspiny neurons and the glia in the primate striatum: a Golgi and electron microscopic study. J Hirnforsch 13: 341–362Google Scholar
  12. Haber SN, Nauta WJH (1983) Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience 9: 245–260Google Scholar
  13. Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235: 322–335Google Scholar
  14. Heimer L (1968) Synaptic distribution of centripetal and centrifugal nerve fibres in the olfactory system of the rat: an experimental anatomical study. J Anat 103: 413–432Google Scholar
  15. Heimer L (1978) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. The continuing evolution of the limbic concept. Plenum Press, New York London, pp 95–187Google Scholar
  16. Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium proceedings. Raven Press, New York, pp 177–193Google Scholar
  17. Hosoya Y, Hirata Y (1974) The fine structure of the “dwarf cell cap” of the olfactory tubercle in the rat's brain. Arch Histol Jpn 35: 407–423Google Scholar
  18. Hosoya Y (1973) Electron microscopic observations of the granule cells (Calleja's islands) in the olfactory tubercle of rats. Brain Res 54: 330–334Google Scholar
  19. Krieger NR (1980) Localization of dopamine-sensitive adenylate cyclase within the rat olfactory tubercle. Brain Res 183: 383–391Google Scholar
  20. Luskin MB, Price JL (1983) The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol 216: 264–291Google Scholar
  21. Milthouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15: 341–363Google Scholar
  22. Mulhouse OE, Heimer L (1984) Cell configurations in the olfactory tubercle of the rat. J Comp Neurol 228: 571–597Google Scholar
  23. Newman R, Winans SS (1980) An experimental study of the ventral striatum of the golden hamster. II. Neuronal connections of the olfactory tubercle. J Comp Neurol 191: 193–212Google Scholar
  24. Pigache RM (1970) The anatomy of “Paleocortex”. A critical review. Ergebn Anat Entwickl Gesch 43: 6Google Scholar
  25. Ribak CE, Fallon JH (1982) The island of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J Comp Neurol 205: 207–218Google Scholar
  26. Rose M (1926) Über das histogenetische Prinzip der Einteilung der Großhirnrinde. J Psychol Neurol (Lpz) 32: 97–160Google Scholar
  27. Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen, 4. Band. Nervensystem, 9. Teil. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Switzer RC, Hill J, Heimer L (1982) The globus pallidus and its rostro-ventral extension into the olfactory tubercle of the rat: a cytoand chemoarchitectural study. Neuroscience 7: 1891–1904Google Scholar
  29. Young WS, Alheid GF, Heimer L (1984) The ventral pallidal projection to the mediodorsal thalamus. A study with fluorescent retrograde tracers and immunohistofluorescence. J Neuroscience 4: 1626–1638Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Gundela Meyer
    • 1
  • Petra Wahle
    • 2
  1. 1.Departamento de Anatomia, Facultad de MedicinaUniversidad de La LagunaTenerifeSpain
  2. 2.Abteilung NeurobiologieMax-Planck-Institut für biophysikalische ChemieAm FaßbergFederal Republic of Germany

Personalised recommendations