Experimental Brain Research

, Volume 4, Issue 4, pp 292–309 | Cite as

Nature of the cerebellar influences upon the red nucleus neurones

  • K. Toyama
  • N. Tsukahara
  • M. Udo


Large cells in the red nucleus of cats were impaled with glass microelectrodes. Under light Nembutal anesthesia it was found that stimulation of the cerebellar cortex produced hyperpolarization in their membrane. Unlike the inhibitory postsynaptic potentials, this hyperpolarization decreased when the membrane was depolarized by passage of currents through the microelectrode, and it increased during application of hyperpolarizing currents: Hence the hyperpolarization is presumed to be produced by removal of tonically impinging excitatory postsynaptic potentials, in the manner of “disfacilitation”. In accordance with the above view, spontaneously arising small EPSPs disappeared during the phase of the hyperpolarization. The source of tonic impingement of excitatory impulses onto the red nucleus was found in the interpositus nucleus. The cells in this nucleus were discharging impulses at frequencies of 50–100/sec which were suppressed after the cerebellar stimulation, presumably via Purkinje cell axons, a depression in the excitability of the interpositus neurones being revealed at the same time. Following the depression, the excitability and impulse discharges of the interpositus neurones were enhanced, and correspondingly there was a late depolarization in the red nucleus neurones. During stimulation of the inferior olive and even of the spinal cord, disfacilitation and late facilitation occurred similarly through the interpositus nucleus, though with longer latencies.

Key Words

Red nucleus Cerebellum Disfacilitation Cats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P., J.C. Eccles and P.E. Voorhoeve: Postsynaptic inhibition of cerebellar Purkinje cells. J. Neurophysiol. 27, 1138–1153 (1964).PubMedGoogle Scholar
  2. Brodal, A.: Experimentelle Untersuchungen über die olivocerebellare Lokalisation. Z. ges. Neurol. Psychiat. 169, 1–153 (1940).CrossRefGoogle Scholar
  3. —, F. Walberg and Th. Blackstad: Termination of spinal afferents to inferior olive in cat. J. Neurophysiol. 13, 431–454 (1950).PubMedGoogle Scholar
  4. Coombs, J.S., D.R. Curtis and J.C. Eccles: The interpretation of spike potentials of motoneurones. J. Physiol. (Lond.) 139, 198–231 (1957).CrossRefGoogle Scholar
  5. Eager, R.P.: Efferent corticonuclear pathways in the cerebellum of the cat. J. comp. Neurol. 120, 81–104 (1963).CrossRefGoogle Scholar
  6. Eccles, J.C.: The physiology of synapses, pp. 152–162. Berlin-Göttingen-Heidelberg: Springer 1964.CrossRefGoogle Scholar
  7. —, R. Llinás and K. Sasaki: Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp. Brain Res. 1, 17–39 (1966a).PubMedGoogle Scholar
  8. —: The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp. Brain Res. 1, 82–101 (1966b).PubMedGoogle Scholar
  9. —: The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. (Lond.) 182, 268–296 (1966c).CrossRefGoogle Scholar
  10. —: The action of antidromic impulses on the cerebellar Purkinje cells. J. Physiol. (Lond.) 182, 316–345 (1966d).CrossRefGoogle Scholar
  11. Ito, M., and N. Kawai: IPSP-receptive field in the cerebellum for Deiters neurones. Proc. Japan Acad. 40, 762–764 (1964).CrossRefGoogle Scholar
  12. —, and M. Yoshida: The cerebellar-evoked monosynaptic inhibition of Deiters neurones. Experientia (Basel) 20, 515–516 (1964).CrossRefGoogle Scholar
  13. —: The origin of cerebellar-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potential. Exp. Brain Res. 2, 330–349 (1966).PubMedGoogle Scholar
  14. —, K. Obata and R. Ochi: Initiation of IPSP in Deiters' and fastigeal neurones associated with the activity of cerebellar Purkinje cells. Proc. Japan Acad. 40, 765–768 (1964a).CrossRefGoogle Scholar
  15. —: The origin of cerebellar-induced inhibition of Deiters neurones. II. Temporal correlation between the trans-synaptic activation of Purkinje cells and the inhibition of Deiters neurones. Exp. Brain Res. 2, 350–364 (1966).PubMedGoogle Scholar
  16. —, M. Yoshida and K. Obata: Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia (Basel) 20, 575–576 (1964b).CrossRefGoogle Scholar
  17. —, T. Hongo, M. Yoshida, Y. Okada and K. Obata: Antidromic and transsynaptic activation of Deiters' neurones induced from the spinal cord. Jap. J. Physiol. 14, 638–658 (1964c).CrossRefGoogle Scholar
  18. Ito, M., N. Kawai and M. Udo: The origin of the cerebellar-induced inhibition and facilitation in the neurones of Deiters' and cerebellar nuclei. XXIII Int. Congress of Physiological Sciences, Tokyo 1965.Google Scholar
  19. Jansen, J., and A. Brodal: Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. J. comp. Neurol. 73, 267–321 (1940).CrossRefGoogle Scholar
  20. Larsell, O.: The cerebellum of the cat and the monkey. J. comp. Neurol. 99, 135–200 (1953).CrossRefPubMedGoogle Scholar
  21. Llinás, R.: Mechanisms of supraspinal actions upon spinal cord activities. Differences between reticular and cerebellar inhibitory actions upon alpha extensor motoneurones. J. Neurophysiol. 27, 1117–1126 (1964).PubMedGoogle Scholar
  22. Maffei, L., and O. Pompeiano: Cerebellar control of flexor motoneurones. An analysis of the postural responses to stimulation of the paramedian lobule in the decerebrate cat. Arch. ital. Biol. 100, 476–509 (1962).Google Scholar
  23. Mancia, M., K. Mechelse and A. Mollica: Microelectrode recording from midbrain reticular formation in the decerebrate cat. Arch. ital. Biol. 95, 110–119 (1957).Google Scholar
  24. Massion, J.: Contribution à l'étude de la régulation cérébelleuse du système extrapyramidal. Contrôle réflexe et tonique de la voie rubrospinale par le cervelet. Bruxelles: Arscia, et Paris: Masson 1961.Google Scholar
  25. —, et D. Albe-Fessard: Duallité des voies sensorielles afférentes contrôlant l'activité du noyau rouge. EEG clin. Neurophysiol. 15, 435–454 (1963).CrossRefGoogle Scholar
  26. Pompeiano, O.: Responses to electrical stimulation of the intermediate part of the cerebellar anterior lobe in the decerebrate cat. Arch. ital. Biol. 96, 330–360 (1958).Google Scholar
  27. Snider, R. S., and W.T. Niemer: A stereotaxic atlas of the cat brain. The University of Chicago press 1961.Google Scholar
  28. Szentágothai, J., u. K. Rajkovits: Über den Ursprung der Kletterfasern des Kleinhirns. Z. Anat. Entwickl.-Gesch. 121, 130–141 (1959).CrossRefGoogle Scholar
  29. Terzuolo, C.A.: Cerebellar inhibitory and excitatory actions upon spinal extensor motoneurones. Arch. ital. Biol. 97, 316–339 (1959).Google Scholar
  30. Toyama, K.: The “disfacilitation” of the red nucleus neurones. XXIII Int. Congress of Physiological Sciences, Tokyo 1965.Google Scholar
  31. Tsukahara, N., K. Toyama and K. Kosaka: Intracellularly recorded responses of red nucleus neurones during antidromic and orthodromic activation. Experientia (Basel) 20, 632–633 (1964).CrossRefGoogle Scholar
  32. —: Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp. Brain Res. 4, 18–33 (1967).CrossRefPubMedGoogle Scholar
  33. Tsukahara, N. Common activation of the red nucleus and the thalamus from the cerebellar nucleus. XXIII Int. Congress of Physiological Sciences, Tokyo 1965.Google Scholar
  34. —, K. Toyama, K. Kosaka and M. Udo: “Disfacilitation” of red nucleus neurones. Experientia (Basel) 21, 544–545 (1965).CrossRefGoogle Scholar
  35. Walberg, F., and J. Jansen: Cerebellar corticonuclear projection studied experimentally with silver impregnation method. J. Hirnforsch. 6, 338–354 (1964).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • K. Toyama
    • 1
    • 2
  • N. Tsukahara
    • 1
    • 3
  • M. Udo
    • 1
  1. 1.Department of Physiology, Faculty of MedicineUniversity of TokyoTokyo
  2. 2.Research Group on Auditory and Visual Information Processing, Broadcasting Science Research Laboratories Japan Broadcasting CorporationTokyoJapan
  3. 3.Institute for Biomedical Research, American Medical Association, Education and Research FoundationChicagoUSA

Personalised recommendations