Cell and Tissue Research

, Volume 216, Issue 1, pp 79–96 | Cite as

Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts

II. The external mechanoreceptors: Hair plates and tactile hairs
  • H. J. Pflüger
  • P. Bräunig
  • R. Hustert


Tactile hairs on the locust thorax can be divided into two classes by their external morphology and their central projection pattern: Short hairs, 10–100 μm in length, which are assembled in distinct plates and rows, and long hairs, 100–800 μm in length, which are distributed all over the body and are organized in large fields or aligned along the ridges of the appendages.

The sensory fibers of the first class arborize in the lateral dorsal neuropile of thoracic ganglia and then extend further into the ipsilateral half of the corresponding ganglion in three main bundles from which fine rami of fibers end in the intermediate neuropile. In all three thoracic ganglia the projection pattern of homologous hair plates is similar.

The sensory fibers of the second class exclusively terminate in special median ventral neuropiles, the ventral association center (VAC) and ventralmost ventral association center (VVAC). In addition fibers from meso- and metathoracic hairs, located close to the longitudinal midline of the animal, may terminate in the contralateral VAC and with one branch project to the next anterior ganglion through the ipsilateral connective. In contrast, fibers from prothoracic hairs were not found to leave their ganglion.

Key words

Tactile hairs Sensory projections Cobalt staining Locusts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman JS, Kien J (1979) Suboesophageal neurons involved in head movements and feeding in locusts. Proc Roy Soc Lond B 205:209–227Google Scholar
  2. Bacon JP, Altman JS (1977) A silver intensification method for cobalt filled neurones in wholemount preparations. Brain Res 138:359–363Google Scholar
  3. Bacon JP, Tyrer M (1979a) The innervation of the wind-sensitive head hairs of the locust, Schistocerca gregaria. Physiological Entomology 4:301–309Google Scholar
  4. Bacon JP, Tyrer M (1979b) Wind interneurone input to flight motor neurones in the locust, Schistocerca gregaria. Naturwissenschaften 66:116Google Scholar
  5. Bässler U (1965) Proprioreceptoren am Subcoxal- und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2:168–193Google Scholar
  6. Bässler U (1977) Sensory control of leg movements in the stick insect, Carausius morosus. Biol Cybernetics 25:61–72Google Scholar
  7. Bräunig P, Hustert R, Pflüger HJ (1980) Distribution and specific central projections of mechanoreceptors in locust thorax and proximal leg joints. I. Morphology, location and innervation of internal proprioceptors of pro-and metathorax and their central projections. Cell Tissue Res 216:57–77Google Scholar
  8. Burrows M, Hoyle G (1973) Neural mechanisms underlying behavior in the locust Schistocerca gregaria. J Neurobiol 4:167–186Google Scholar
  9. Dethier VG (1963) The physiology of insect senses. London: MethuenGoogle Scholar
  10. Eibl E, Huber F (1979) Central projections of tibial sensory fibers within the three thoracic ganglia of crickets (Gryllus campestris L, Gryllus bimaculatus de Geer). Zoomorphologie 92:1–17Google Scholar
  11. French AS, Wong RKS (1976) The responses of trochanteral hair plate sensilla in the cockroach to periodic and random displacements. Biol Cybernetics 22:33–38Google Scholar
  12. French AS, Wong RKS (1977) Nonlinear analysis of sensory transduction in an insect mechanoreceptor. Biol Cybernetics 26:231–240Google Scholar
  13. French AS, Sanders EJ (1979) The mechanism of sensory transduction in the sensilla of the trochanteral hair plate of the cockroach, Periplaneta americana. Cell Tissue Res 198:159–174Google Scholar
  14. Gaffal KP, Tichy H, Theiss J, Seelinger G (1975) Structural polarities in mechanosensitive sensilla and their influence on stimulus transmission (Arthropoda). Zoomorphologie 82:79–103Google Scholar
  15. Gregory G (1974) Neuroanatomy of the mesothoracic ganglion of the cockroach Periplaneta americana (L.) I. The roots of the peripheral nerves. Phil Trans Roy Lond B 267:421–465Google Scholar
  16. Honegger HW (1977) Interommatidial hair receptor axons extending into the ventral nerve cord in the cricket, Gryllus campestris. Cell Tissue Res 182:281–285Google Scholar
  17. Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194:337–351Google Scholar
  18. Knyazewa NI (1969) The locust leg receptors participating in the reflex of initiation of flight (Locusta migratoria L.). Trudy vsesojuznogo entomolgiceskogo obscestva Moskau 53:132–147Google Scholar
  19. Liu YS, Leo PL (1960) I listological studies on the sense organs and the appendages of the oriental migratory locust, Locusta migratoria manilensis MEYEN. Acta Entomol Sinica 10: (no 3) 243–299Google Scholar
  20. Lombarde L (1974) On the presence of two coxal sense organs in pterygote insects. Monitore Zoologico Italiano 7:243–246Google Scholar
  21. Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z vergl Physiol 45:475–569Google Scholar
  22. Palka J, Levine R, Schubiger M (1977) The cercus-to-giant interneurone system of crickets. I. Some attributes of the sensory cells. J Comp Physiol 119:267–283Google Scholar
  23. Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hair plate afferents and motoneurones in the cockroach leg. J Exp Biol 64:251–266Google Scholar
  24. Pflüger HJ (1980a) The function of hair sensilla on the locust's leg: The role of tibial hairs. J Exp Biol 87:163–175Google Scholar
  25. Pflüger HJ (1980b) Central nervous projections of sternal trichoid sensilla in locusts. Naturwissenschaften 67:316–317Google Scholar
  26. Pitman RH, Tweedle CD, Cohen MJ (1972) Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176:412–414Google Scholar
  27. Plotnikova SI (1979) Strukturelle Organisation des zentralen Nervensystems von Insekten. Nauka Leningrad (in Russian)Google Scholar
  28. Pringle JWS (1938) Proprioception in insects. III. The function of the hair sensilla at the joints. J Exp Biol 15:467–473Google Scholar
  29. Rowell CHF (1961) The structure and function of the prothoracic spine of the desert locust, Schistocerca gregaria Forskål. J Exp Biol 38:457–469Google Scholar
  30. Rowell CHF (1969) The control of reflex responsiveness and the integration of behaviour. In: Treherne JE, Beament JWL (eds) The physiology of the insect central nervous system. Academic Press, LondonGoogle Scholar
  31. Runion HI, Usherwood PNR (1968) Tarsal receptors and leg reflexes in the locust and grasshopper. J Exp Biol 49:421–436Google Scholar
  32. Schneider D, Kaissling KE (1957) Der Bau der Antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticuläre Bindungen und innerer Bau. Zool Jb Abt Anat u Ontog 76:223–250Google Scholar
  33. Siegler MVS, Burrows M (1979) The morphology of local nonspiking interneurons in the metathoracic ganglion of the locust. J Comp Neurol 183:121–148Google Scholar
  34. Strausfeld NJ, Obermayer M (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and central nervous systems. J Comp Physiol 111:1–12Google Scholar
  35. Tatar G (1976) Mechanische Sinnesorgane an den Beinen der Stabheuschrecke. Diplomarbeit Universität Köln (Zoolog Inst Tierphysiologie)Google Scholar
  36. Thurm U (1963) Die Beziehungen zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeld-Sensillen von Bienen. Z vergl. Physiol 46:351–382Google Scholar
  37. Thurm U (1964) Mechanoreceptors in the cuticle of the honey bee: fine structure and stimulus mechanism. Science 145:1063–1065Google Scholar
  38. Tyrer NM, Altman JS (1974) Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. J Comp Neurol 157:117–137Google Scholar
  39. Tyrer NM, Bacon JP, Davies CA (1979) Sensory projection from the wind-sensitive head hairs of the locust Schistocerca gregaria. I. Distribution in the central nervous system. Cell Tissue Res 203:79–92Google Scholar
  40. Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z vergl Physiol 48:198–250Google Scholar
  41. Wilson JA (1979) The structure and function of serially homologous leg motor neurones in the locust. I. Anatomy. J Neurobiol 10:41–65Google Scholar
  42. Wong RKS, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking. J Exp Biol 64:233–249Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. J. Pflüger
    • 1
  • P. Bräunig
    • 1
  • R. Hustert
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations