Plant Cell Reports

, Volume 10, Issue 9, pp 467–470

Long-term cultures of barley synthesize and correctly deposit seed storage proteins

  • Annegret Tewes
  • Renate Manteuffel
  • Klaus Adler
  • Ernst Weber
  • Ulrich Wobus
Article

Summary

Long-term cultures of four different cultivars of barley (Hordeum vulgare L.) have been established. Both callus and suspension cultures formed embryogenic structures at high frequency even after more than 18 months of culture. These compact proembryogenic cell clusters synthesize seed storage globulins whereas loose cell aggregates in callus culture and suspension cultures of fine dispersed consistency were free of globulins. Globulin synthesis was especially intense in compact structures of callus cultures established from suspension culture-derived protoplasts. Within the cells storage globulins are deposited in the vacuolar compartment as in zygotic embryos. The molecular data provided recommend the system for studies on factors determining seed protein gene expression and intracellular protein transport.

Abbreviations

MS

Murashige and Skoog (1962)

2,4-D

2,4-dichlorophenoxyacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammirato PV (1989) Int. Assoc. Plant Tissue Culture Newsletter 57:2–17Google Scholar
  2. Craig S, Goodchild DJ (1982) Europ J Cell Biol 28:251–256PubMedGoogle Scholar
  3. Chrispeels MJ (1991) Ann Rev Plant Physiol Plant Molec Biol (in press)Google Scholar
  4. Crouch ML (1982) Planta 156:520–524CrossRefPubMedGoogle Scholar
  5. Gamborg OL, Miller RA, Ojima K (1968) Exp. Cell Res 50:151–158CrossRefPubMedGoogle Scholar
  6. Hakman I, Stabel P, Engström P, Eriksson T (1990) Physiol Plantarum 80:441–445CrossRefGoogle Scholar
  7. Laurell CB (1966) Anal Biochem 15:45–52CrossRefPubMedGoogle Scholar
  8. Lührs R, Lörz H (1988) Planta 175:71–81CrossRefPubMedGoogle Scholar
  9. Müller B, Wegener U (1989) Archiv Züchtungsfschg 19:359–366Google Scholar
  10. Murashige T, Skoog F (1962) Physiol Plant 15:473–497CrossRefGoogle Scholar
  11. Rhodes CA, Pierce DA, Mettler IJ, Masarenhas D, Detmer J (1988) Science 240:204–207CrossRefPubMedGoogle Scholar
  12. Roth J, Bendayan M, Carlemalm E, Villinger W, Garavito M (1981) J Histochem Cytochem 29:663–671CrossRefPubMedGoogle Scholar
  13. Roth J (1983) In: Bullock GR and Petrusz P (eds.): Techniques in Immunocytochemistry, vol 2, Academic Press London, New York, pp. 217–284Google Scholar
  14. Shewry PR, Ellis JR, Pratt HM and Miflin BJ (1978) J Sci Food Agric 29:433–441CrossRefGoogle Scholar
  15. Shoemaker RC, Christofferson SE, Galbraith DW (1987) Plant Cell Reports 6: 12–15CrossRefPubMedGoogle Scholar
  16. Shotwell MA, Larkins BA (1989) In: Stumpf PK, Conn E (eds) The Biochemistry of Plants, vol 15, Academic Press, San Diego, pp. 298–338Google Scholar
  17. Stuart DA, Nelson J, Nichol JW (1988) J Plant Physiol 132:134–139CrossRefGoogle Scholar
  18. Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Bio/Technology 6: 1072–1074CrossRefGoogle Scholar
  19. Vasil V, Redway F, Vasil IK (1990) Bio/Technology 8:429–434CrossRefGoogle Scholar
  20. Weber E, Manteuffel R (1988) Biochem Physiol Pflanzen 183:153–158CrossRefGoogle Scholar
  21. Zhang WG, Wu R (1988) Theor Appl Genet 76:835–840CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Annegret Tewes
    • 1
  • Renate Manteuffel
    • 1
  • Klaus Adler
    • 1
  • Ernst Weber
    • 1
  • Ulrich Wobus
    • 1
  1. 1.Institut für Genetik und KulturpflanzenforschungGaterslebenFRG

Personalised recommendations