The Journal of Membrane Biology

, Volume 140, Issue 2, pp 111–122

The relationship between permeant size and permeability in lipid bilayer membranes

  • T. -X. Xiang
  • B. D. Anderson
Articles

Abstract

Permeability coefficients (Pm) across planar egg lecithin/decane bilayers and bulk hydrocarbon/water partition coefficients (Kw→hc) have been measured for 24 solutes with molecular volumes, V, varying by a factor of 22 and Pm values varying by a factor of 107 to explore the chemical nature of the bilayer barrier and the effects of permeant size on permeability. A proper bulk solvent which correctly mimics the microenvironment of the barrier domain was sought. Changes in Pm/Kw→hc were then ascribed to size-dependent partitioning and/or size-dependent diffusivity. The diffusion coefficient-size dependency was described by Dbarrier = D0/Vn. When n-decane was used as a reference solvent, the correlation between log Pm/Kw→hc and log V was poor (r = 0.56) with most of the lipophilic (hydrophilic) permeants lying below (above) the regression line. Correlations improved significantly (r = 0.87 and 0.90, respectively) with more polarizable solvents, 1-hexadecene and 1,9-decadiene. Values of the size selectivity parameter n were sensitive to the reference solvent (n = 0.8 ± 0.3, 1.2 ± 0.1 and 1.4 ± 0.2, respectively, for decane, hexadecene, and decadiene). Decadiene was selected as the most suitable reference solvent. The value for n in bilayer transport is higher than that for bulk diffusion in decane (n = 0.74±0.10), confirming the steep dependence of bilayer permeability on molecular size. Statistical mechanical theory recently developed by the authors suggests that a component of this steep size dependence may reside in size-dependent solute partitioning into the ordered chain region of bilayers. This theory, combined with the above diffusion model, yielded the relationship, Pm/KW→hc=D0exp(™αV)Vn. A fit of the experimental data to this model gave the best fit (r=0.93) with α = 0.0053±0.0021 and n=0.8 ± 0.3, suggesting that both diffusion and partitioning mechanisms may play a role in determining the size dependence of lipid bilayer permeabilities.

Key words

Permeability Transport Bilayers Size dependence Partition coefficients Diffusion coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albery, W.J., Greenwood, A.R., Kibble, R.K. 1967. Diffusion coefficients of carboxylic acids. Trans. Faraday Soc. 63:360–368Google Scholar
  2. Almeida, P.F.F., Vaz, W.L.C., Thompson, T.E. 1992. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31: 6739–6747PubMedGoogle Scholar
  3. Anderson, B.D., Raykar, P.V. 1989. Solute structure-permeability relationships in human stratum corneum. J. Invest. Dermatol. 93: 280–286Google Scholar
  4. Barenholz, Y., Cohen, T, Korenstein, R., Ottolenghi, M. 1991. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Biophys. J. 59:110–124Google Scholar
  5. Bevington, P.R. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New YorkGoogle Scholar
  6. Brown, M.F., Ribeiro, A.A., Williams, G.D. 1983. New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc. Natl. Acad. Sci. USA 80:4325–4329Google Scholar
  7. Chan, T.C. 1983. Diffusion of pseudospherical molecules: An investigation on the effects of dipole moment. J. Phys. Chem. 79:3591–3593Google Scholar
  8. Chandler, D. 1974. Translational and rotational diffusion in liquids. I. Translational single-particle correlation functions. J. Chem. Phys. 60:3500–3507Google Scholar
  9. Chen, L.A., Dale. R.E., Roth, S., Brand. L. 1977. Nanosecond timedependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity”. J. Biol. Chem. 252:2163–2169Google Scholar
  10. Cohen, M.H., Turnbull, D. 1959. Molecular transport in liquids and glasses. J. Chem. Phys. 31:1164–1168Google Scholar
  11. Collander, R. 1951. The partition of organic compounds between higher alcohols and water. Acta Chem. Scand. 5:774–780Google Scholar
  12. De Gier, J., Mandersloot, J.G., Deenen, Van L.L.M. 1968. Lipid composition and permeability of liposomes. Biochim. Biophys. Acta 150:666–675Google Scholar
  13. Diamond, J.M., Katz, Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membrane Biol. 17:121–154Google Scholar
  14. Diamond, J.M., Szabo, G., Katz, Y. 1974. Theory of nonelectrolyte permeation in a generalized membrane. J. Membrane Biol. 17: 148–152Google Scholar
  15. Dill, K.A., Flory, P.J. 1981. Molecular organization in micelles and vesicles. Proc. Natl. Acad. Sci. USA 78:676–680Google Scholar
  16. Edward, J.T. 1970. Molecular volumes and the Stokes-Einstein equation. J. Chem. Ed. 47:261–270Google Scholar
  17. Egberts, E., Berendsen, H.J.C. 1988. Molecular dynamics simulation of a smectic liquid crystal with atomic detail. J. Chem. Phys. 89:3718–3732Google Scholar
  18. Evans, D.F., Tominaga, T., Chan, C. 1979. Diffusion of symmetrical and spherical solutes in protic, aprotic, and hydrocarbon solvents. J. Sol. Chem. 8:461–478Google Scholar
  19. Fettiplace, R., Andrews, D.M., Haydon, D.A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes. J. Membrane Biol. 5:277–296Google Scholar
  20. Finkelstein, A. 1976. Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68:127–135Google Scholar
  21. Fujita, H. 1968. Organic vapors above the glass transition temperature. In: Diffusion in Polymers. J. Crank and G.S. Park, J. Crank and G.S. Parks, editors, pp. 75–105. Academic, New YorkGoogle Scholar
  22. Gutknecht, J., Tosteson, D.C. 1973. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers. Science 182:1258–1261PubMedGoogle Scholar
  23. Hayduk, W., Buckley, W.D. 1972. Effect of molecular size and shapeon diffusivity in dilute liquid solutions. Chem. Eng. Sci. 27:1997–2003Google Scholar
  24. Hildebrand, J.H. 1977. Viscosity and Diffusivity. John Wiley & Sons. New YorkGoogle Scholar
  25. Hodgman, C.D., Weast, R.C., Shankland, R.S., Selby. S.M., editors. 1963. Handbook of Chemistry and Physics. 44th edition. Chemical Rubber Publishing. Cleveland, OHGoogle Scholar
  26. Leermakers, F.A.M., Scheutjens, J.M.H.M., Lyklema, J. 1983. On the statistical thermodynamics of membrane formation. Biophys. Chem. 18:535–560Google Scholar
  27. Lieb, W.R., Stein, W.D. 1969. Biological membranes behave as nonporous polymeric sheets with respect to diffusion of non-electrolytes. Nature 224:240–243Google Scholar
  28. Lieb, W.R., Stein, W.D. 1971. The molecular basis of simple diffusion within biological membranes. Curr. Top. Membr. Transp. 11: 1–39Google Scholar
  29. Lieb, W.R., Stein, W.D. 1986. Simple diffusion across the membrane bilayer. In: Transport and Diffusion across Cell Membranes. W.D. Stein, editor, pp. 69–112. Academic, Orlando, FLGoogle Scholar
  30. Marqusee, J.A., Dill, K.A. 1986. Solute partitioning into chain molecule interphases: Monolayers, bilayer membranes, and micelles. J. Chem. Phys. 85:434–444Google Scholar
  31. Mauritz, K.A., Storey, R.F., George, S.E. 1990. A general free volume based theory for the diffusion of large molecules in amorphous polymer above Tg. 1. Application to di-n-alkyl phthalates in PVC. Macromolecules 23:441–450Google Scholar
  32. McIntosh, T.J., Simon, S.A., MacDonald, R.C. 1980. The organization of nalkanes in lipid bilayers. Biochim. Biophys. Acta. 597: 445–463Google Scholar
  33. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp. 9:71–144Google Scholar
  34. Miller, K.W., Hammond, L., Porter, E.G. 1977. The solubility of hydrocarbon gases in lipid bilayers. Chem. Phys. Lipids 20:229–241Google Scholar
  35. Moscicki, J.K., Shin, Y.-K., Freed, J.H. 1993. Translational diffusion in a smectic-A phase by electron spin resonance imaging: The freevolume model. J. Chem. Phys. 99:634–649Google Scholar
  36. Nicklas, K., Bocker, J., Schlenkrich, M., Brickmann, J., Bopp, P. 1991. Molecular dynamics studies of the interface between a model membrane and an aqueous solution. Biophys. J. 60:261–272Google Scholar
  37. Pace, R.J., Datyner, A. 1979. Statistical mechanical model of diffusion of complex penetrants in polymers. J. Polym. Sci., Polym. Phys. Ed. 17:1675–1692Google Scholar
  38. Pfeiffer, W., Schlossbauer, G., Knoll, W., Farago, B., Steyer, A., Sackmann, E. 1988. Ultracold neutron scattering study of local lipid mobility in bilayer membranes. J. Phys. (France). 49:1077–1082Google Scholar
  39. Pimentel, G.C., McClelland, A.L. 1960. The Hydrogen Bond. W.H. Freeman, San FranciscoGoogle Scholar
  40. Pope, J.M., Walker, L.W., Dubro, D. 1984. On the ordering of nalkane and n-alcohol solutes in phospholipid bilayer model membrane systems. Chem. Phys. Lipids 35:259–277Google Scholar
  41. Raykar, P.V., Fung, M.C., Anderson, B.D. 1988. The role of protein and lipid domains in the uptake of solutes by human stratum corneum. Pharm. Res. 5:140–150Google Scholar
  42. Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions, Butterworth, LondonGoogle Scholar
  43. Seelig, A., Seelig, J. 1974. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845Google Scholar
  44. Simon, S.A., Stone, W.L. Busto-Latorre, P. 1977. A thermodynamic study of the partition of n-hexane into phosphatidylcholine and phosphatidylcholine-cholesterol bilayers. Biochim. Biophys. Acta 468:378–388Google Scholar
  45. Smyth, C.P. 1955. Dielectric Behaviour and Structure. McGraw-Hill, New YorkGoogle Scholar
  46. Stein, W.D. 1986. Transport and Diffusion Across Cell Membranes, Academic, Orlando, FLGoogle Scholar
  47. Stockton, G.W., Smith, I.C.P. 1976. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. Chem. Phys. Lipids 17: 251–263Google Scholar
  48. Takeda, K., Yamashita, H., Akiyama, M. 1987. Dimerization of some carboxylic acids in organic phases. Solvent Extraction and Ion Exchange 5:29–53Google Scholar
  49. Vaz, W.L.C., Clegg, R.M., Hallmann, D. 1985. Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. Biochemistry 24:781–786Google Scholar
  50. Vrentas, J.S., Duda, J.L., Ling, H.-C. 1985a. Free-volume theories for self-diffusion in polymer-solvent system. I. Conceptual differences in theories. J. Polym. Sci. Polym. Phys. Ed. 23:275–288Google Scholar
  51. Vrentas, J.S., Duda, J.L., Ling, H.-C., Hou, A.-C. 1985b. Free-volume theories for self-diffusion in polymer-solvent systems. II. Predictive capabilities. J. Polym. Sci. Polym. Phys. Ed. 23:289–304Google Scholar
  52. Vrentas, J.S., Vrentas, C.M. 1990. Influence of solvent size on the diffusion process for polymer-solvent systems. J. Polym. Sci., Polym. Lett. Ed. 28:379–383Google Scholar
  53. Walter, A. 1981. Nonelectrolyte Permeability of Lipid Bilayer Membranes. Duke University, Durham, NCGoogle Scholar
  54. Walter, A., Gutknecht, J. 1984. Monocarboxylic acid permeation through lipid bilayer membranes. J. Membrane Biol. 77:255–264Google Scholar
  55. Walter, A., Gutknecht, J. 1986. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membrane Biol. 90:207–217Google Scholar
  56. Walter, A., Hastings, D., Gutknecht, J. 1982. Weak acid permeability through lipid bilayer membranes. Role of chemical reactions in the unstirred layer. J. Gen. Physiol. 79:917–933Google Scholar
  57. Walter, H., Ioakimidis, S. 1976. Liquid diffusivities in normal paraffin solutions. J. Chem. Eng. Data 21:255–260Google Scholar
  58. White, S.H. 1977. Studies of the physical chemistry of planar bilayer membranes using high-precision measurements of specific capacitance. Ann. NY Acad. Sci. 303:243–265Google Scholar
  59. White, S.H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J. 23:337–347Google Scholar
  60. White, S.H., King, G.I., Cain, J.E. 1981. Location of hexane in lipid bilayers determined by neutron diffraction. Nature 290:161–163Google Scholar
  61. Wiener, M.C., White, S.H. 1992. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structures. Biophys. J. 61:434–447Google Scholar
  62. Wilke, C.R., Chang, P. 1955. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1:264–270Google Scholar
  63. Xiang, T.-X. 1993. A computer simulation of free volume distributions and related structural properties in a model lipid bilayer. Biophys. J. 65:1108–1120.Google Scholar
  64. Xiang, T.-X., Anderson, B.D. 1993. Diffusion of ionizable solutes across planar lipid bilayer membranes: boundary layer pH gradients and the effects of buffers. Pharm. Res. 10:1654–1661Google Scholar
  65. Xiang, T.-X., Anderson, B.D. 1994. Molecular distributions in interphases: A statistical mechanical theory combined with molecular dynamics simulation of a model lipid bilayer. Biophys. J. 66:561–573Google Scholar
  66. Xiang, T.-X., Chen, X., Anderson, B.D. 1992. Transport methods for probing the barrier domain of lipid bilayer membranes. Biophys. J. 63:78–88Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • T. -X. Xiang
    • 1
  • B. D. Anderson
    • 1
  1. 1.Department of Pharmaceutics and Pharmaceutical ChemistryUniversity of UtahSalt Lake City

Personalised recommendations