Plant Cell Reports

, Volume 12, Issue 11, pp 644–647 | Cite as

Factors influencing transformation frequency of tomato (Lycopersicon esculentum)

  • Jeroen S. C. van Roekel
  • Brigitte Damm
  • Leo S. Melchers
  • André Hoekema


We developed an efficient procedure for transformation and regeneration of L. esculentum cv. Moneymaker from cotyledon explants. The effect of two parameters on the transformation frequency was investigated in detail. The use of feeder layers during cocultivation proved to be critical. In addition, it was found that Agrobacterium strains harbouring a L,L-succinamopine type helper plasmid yielded significantly higher transformation frequencies than those with octopine or nopaline type helper plasmids. The optimized protocol was used to obtain transformation frequencies averaging 9%. Of the plants produced approximately 80% proved to be diploid, of which 67% contained the transgene(s) on a single locus.


Single Locus Lycopersicon Esculentum Transformation Frequency Feeder Layer Agrobacterium Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



2,4-dichlorophenoxy-acetic acid




indoleacetic acid




neomycin phosphotransferase II


zeatin riboside


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. v. d. Bulk R.W., Löffler H.J.M., Lindhout W.H., Koorneef M. (1990) Theor. Appl. Genet 80: 817–825.Google Scholar
  2. Chyi Y.S., Jorgenson R.A., Goldstern D., Tarksley S.D., Loaiza-Figueroa F. (1986) Mol. Gen. Genet. 204: 64–69.Google Scholar
  3. Davis M.E., Lineberger R.D., Miller A.R. (1990) Plant Cell. Tissue and Organ Culture 24: 115–121.Google Scholar
  4. Filatti J.J., Kiser J., Rose R., Luca C. (1987) Biotechnology 5: 726–730.Google Scholar
  5. Gamborg O.L., Miller R.A., Ojima K. (1986) Experimental Cell Research 50: 151–158.Google Scholar
  6. Godwin I., Todd G., Ford-Lloyd B., Newbury J. (1991) Plant Cell Reports 9: 671–675.Google Scholar
  7. Hoekema A, Huisman M.J., Molendijk L., van den Elzen P.J.M., Cornelissen B.J.C. (1989) Biotechnology 7: 273–278.Google Scholar
  8. Hood E.E., Gelvin S.B., Melchers L.S., Hoekema A. (1993) Transgenic Research 2: 208–218.Google Scholar
  9. Koorneef M., van Diepen J.A.M., Hanhart C.J., Kieboom-de Waart A.C., Martinelli L., Schoenmakers H.C.H., Wijbrandi J. (1989) Euphitica 43: 179–186.Google Scholar
  10. McCormick S., Niedermeyer J., Fry J., Barnason A., Horsch R., Fraley R. (1986) Plant Cell Reports 5: 81–84.Google Scholar
  11. Murashige T., Skoog F. (1962) Physiol. Plant. 15: 473–479.Google Scholar
  12. Pen J., Molendijk L., Quax W.J., Sijmons P.C., van Ooyen A.J.J., van den Elzen P.J.M., Rietveld K., Hoekema A. (1992) Biotechnology 10: 292–296.Google Scholar
  13. Vancanneyt G., Schmidt R., O'Conner-Sanchez A., Willmitzer L., Rocha-Sosa M. (1990) Mol. Gen. Genet. 220: 245–250.Google Scholar
  14. Weide R., Koorneef M., Zabel P. (1989) Theor Appl Genet. 78: 169–172.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Jeroen S. C. van Roekel
    • 1
  • Brigitte Damm
    • 1
  • Leo S. Melchers
    • 1
  • André Hoekema
    • 1
  1. 1.MOGEN International NVCB LeidenThe Netherlands

Personalised recommendations