The Journal of Membrane Biology

, Volume 139, Issue 2, pp 127–136 | Cite as

Regulation of gap junctional coupling in isolated pancreatic acinar cell pairs by cholecystokinin-octapeptide, vasoactive intestinal peptide (VIP) and a VIP-antagonist

  • A. Ngezahayo
  • H. -A. Kolb


Cholecystokinin-octapeptide (CCK-OP) induces a time- and dose-dependent decrease of gap Junctional conductance in isolated pairs of pancreatic acinar cells. In double whole-cell experiments, the time course could be described by the latency and the half-life time (t 1/2 ) of cell-to-cell uncoupling. The latency shows a biphasic dependence on [CCK-OP] with a minimum of about 50 sec at 10−9m CCK-OP. In the presence of vasoactive intestinal peptide (VIP), the biphasic relationship is shifted to lower CCK-OP concentrations. The increase of latency at high concentrations of CCK-OP (> 1009m) was blocked by addition of a VIP-antagonist. t 1/2 decreases monophasically with increasing [CCKOP]. Addition of GTPγS to the pipette solution suppresses the [CCK-OP] dependence of the latency and potentiates the uncoupling phase. The kinetic data are discussed in terms of CCK binding to receptors of high and low affinity. Evidence is presented that secretion and cell-to-cell coupling are not related by an all-ornone process, but that for physiological CCK-OP concentrations, gap junctional uncoupling follows secretion.

Key words

Gap junctions Double whole cell Cholecystokinin-octapeptide Vasoactive intestinal peptide (VIP) VIP antagonist Pancreatic acinar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asaoka, Y., Yoshida, K., Oka, M., Shinomura, T., Koide, H., Ogita, K., Kikkawa, U., Nishizuka, Y. 1992. The family of protein kinase C in transmembrane signaling for cellular regulation. J. Nutr. Sci. Vitaminol. Spec No.: 7–12Google Scholar
  2. Ashkenazi, A., Peralta, E.G., Winslow, J.W., Ramachandran, J., Capon, D.J. 1989. Functionally distinct G proteins selectively couple different receptors to Pl hydrolysis in the same cell. Cell 56:487–493Google Scholar
  3. Barlas, N., Jensen, R.T., Gardner, J.D. 1982. Cholecystokinin-induced restricted stimulation of pancreatic enzyme secretion. Am. J. Physiol. 242:G464-G469Google Scholar
  4. Barrowman, M.M., Cockroft, S., Gomperts, B.D. 1986. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature 319:504–507Google Scholar
  5. Berridge, M.J. 1987. Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56:159–193Google Scholar
  6. Berridge, M.J., Irvine, R.F. 1989. Inositol phosphates and cell signaling. Nature 341:197–205Google Scholar
  7. Burnham, D.B., Sung, C.K., Munowitz, P., Williams, J.A. 1988. Regulation of protein phosphorylation in pancreatic acini by cyclic AMP-mediated secretagogues: interaction with carbamylcholine. Biochim. Biophys. Acta 969:33–39Google Scholar
  8. Chanson, M., Bruzzone, R., Bosco, D., Meda, P. 1989b. Effects of nalcohols on junctional coupling and amylase secretion of pancreatic acinar cells. J. Cell. Physiol 139:147–156Google Scholar
  9. Chanson, M., Bruzzone, R., Spray, D.C., Regazzi, R., Meda, P. 1988. Cell uncoupling and protein kinase C: correlation in a cell line but not in a differentiated tissue. Am. J. Physiol. 255:C699-C704Google Scholar
  10. Chanson, M., Meda, P., Bruzzone, R. 1989 a. Increase in pancreatic secretion during uncoupling:evidence for a protein kinase C-independent effect. Exp. Cell Res. 182:349–357Google Scholar
  11. Chow, R. H., von Rüden, L., Neher, E. 1992. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cell. Nature 356:60–63Google Scholar
  12. Gardner, J.D., Jackson, M.J. 1977. Regulation of amylase release from dispersed pancreatic acinar cells. J. Physiol. 270:439–454Google Scholar
  13. Gardner, J.D., Jensen, R.T. 1981. Regulation of pancreatic exocrine secretion in vitro: the action of secretagogues. Philos. Trans. R. Soc. Lond. 296:17–26Google Scholar
  14. Hootman, S.R., Ochs, D.L., Williams, J.A. 1985. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells. Am. J. Physiol. 249:G470-G478Google Scholar
  15. Iwatsuki, N., Petersen, O.H. 1978. Pancreatic acinar cells: acetylcholine-evoked electrical uncoupling and its ion dependency. J. Physiol. 274:81–96Google Scholar
  16. Jensen, R.T., Wank, S.A., Rowley, W.H., Sato, S., Gardner, J.D. 1989. Interaction of CCK with pancreatic acinar cells. Trends Pharmacol. Sci. 10:418–423Google Scholar
  17. Kolb, H.-A. 1992. Double whole cell patch clamp technique. In: Practical Electrophysiological Methods: A Guide for In Vitro Studies in Vertebrate Neurobiology. H. Kettenmann, R. Grantyn, Editors, pp. 289–298. John Wiley & Sons, New YorkGoogle Scholar
  18. Kolb, H. A., Somogyi, R. 1991. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev. Physiol. Biochem. Pharmacol. 118:2–47Google Scholar
  19. Lamb, T.D., Pugh, E.H. 1992. G-protein: gain and kinetics. Trends in Neurosci. 15:291–298Google Scholar
  20. Loewenstein, W.R. 1985. Regulation of cell-to-cell communication by phosphorylation. Biochem. Soc. Symp. Lond. 50:43–58Google Scholar
  21. Matozaki, T., Göke, B., Tsunoda, Y., Rodriguez, M., Martinez, J., Williams, J.A. 1990. Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+-mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. J. Biol. Chem. 265:6247–6254Google Scholar
  22. Matozaki, T., Sakamoto, C., Nagao, M., Nishizaki, H., Baba, S. 1988. G protein in stimulation of Pl hydrolysis by CCK in isolated rat pancreatic acinar cells. Am. J. Physiol. 255:E652-E659Google Scholar
  23. Matozaki, T., Williams, J.A. 1989. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. J. Biol. Chem. 264:14729–14734Google Scholar
  24. Meda, P., Bruzzone, R., Chanson, M., Bosco, D., Orci, L. 1987. Gap junctional coupling modulates secretion of exocrine pancreas. Proc. Natl. Acad. Sci. USA 84:4901–4904Google Scholar
  25. Merritt, J.E., Taylor, C.W., Rubin, R.P., Putney, J.W., Jr. 1986. Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 236:337–343Google Scholar
  26. Nakanishi, H., Ohyanagi, H., Takeyama, Y., Onoyama, H., Saitoh, Y., Kikuchi, A., Takai, Y. 1988. Mode of inhibitory action of cholecystokinin in amylase release from isolated rat pancreatic aciniinhibition of secretory process post to protein kinase C-calcium ion systems. Biochem. Biophys. Res. Commun. 154:1314–1322Google Scholar
  27. Neyton, J., Trautmann, A. 1985. Single-channel currents of intracellular junction. Nature 317:331–335Google Scholar
  28. Ngezahayo, A., Kolb, H.-A. 1993. Gap junctional conductance tunes phase difference of cholecystokinin evoked calcium oscillations in pairs of pancreatic acinar cells. Pfluegers Arch. 422: 413–415Google Scholar
  29. Nishizuka, Y. 1988. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665Google Scholar
  30. Oberdisse, E., Lapetina, E.G. 1987. GDPβS enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein. Biochem. Biophys. Res. Commun. 144:1188–1196Google Scholar
  31. Ohatsuki, K., Ikeuchi, T., Yokoyama, M. 1986. Characterization of nucleoside-diphosphate kinase-associated guanine nucleotidebinding proteins from HeLa S3 cells. Biochim. Biophys. Acta 882:322–330Google Scholar
  32. Pandol, S.J., Schoeffield, M.S. 1986. 1,2 diacylglycerol, protein kinase C, and pancreatic enzyme secretion. J. Biol. Chem. 261: 4438–4444Google Scholar
  33. Pandol, S.J., Thomas, M.W., Schoeffield, M.D., Sacks, G., Shmeul, M. 1985. Role of free calcium in secretagogue-stimulated amylase release from dispersed acini from guinea pig pancreas. J. Biol. Chem. 260:10081–1086Google Scholar
  34. Peikin, S.R., Rottman, A.J., Batzri, S., Gardner, J.D. 1978. Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am. J. Physiol. 235:E743-E749Google Scholar
  35. Piiper, A., Plusczk, T., Echhardt, L., Schulz, I. 1991a. Effects of cholecystokinin, cholecystokinin JMV-180 and GTP analogs on enzyme secretion from permeabilized acini and chloride conductance in isolated zymogen granules of rat pancreas. Eur. J. Biochem. 197:391–398Google Scholar
  36. Piiper, A., Pröfrock, A., Schulz, I. 1991b. Effects of epidermal growth factor and calcium omission on cholecystokinin-stimulated Cl~ conductance in rat pancreatic zymogen granules. Biochem. Biophys. Res. Commun. 181:827–832Google Scholar
  37. Putney, J.W., Burgess, G.M., Halenda, S.P., McKinney, J.S., Rubin, R.P. 1983. Effects of secretagogues on [32P]phosphatidylinositol 4,5-bisphosphate metabolism in the exocrine pancreas. Biochem. J. 212:483–488Google Scholar
  38. Saez, J.C., Spray, D.C., Nairn, A.C., Hertzberg, E., Greengard, P., Bennett, M.V.L.s 1986. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kD principal gap junction polypeptide. Proc. Natl. Acad. Sci. USA 83:2473–2477Google Scholar
  39. Sato, S., Stark, H.A., Martinez, J., Beaven, M.A., Jensen, R.T., Gardner, J.D. 1989. Receptor occupation, calcium mobilization, and amylase release in pancreatic acini: effect of CCK-JMV-180. Am. J. Physiol. 257:G202-G209Google Scholar
  40. Schnefel, S., Banfic, H., Eckhardt, L., Schultz, G., Schulz, I. 1988. Acetylcholine and cholecystokinin receptors functionally couple by different G-proteins to phospholipase C pancreatic acinar cells. FEBS Lett. 230:125–130Google Scholar
  41. Schnefel, S., Pröfrock, A., Hinsch, K.D., Schulz, I. 1990. Cholecystokinin activates Gi1−, Gi2−, Gi3− and several Gs-proteins in rat pancreatic acinar cells. Biochem. J. 269: 483–488Google Scholar
  42. Schwiebert, E.M., Light, D.R., Fejes-Toth, G., Naray-Fejes-Toth, A., Stanton, B.A. 1990. A GTP-binding protein activates chloride channels in a renal epithelium. J. Biol. Chem. 265:7725–7728Google Scholar
  43. Seifert, R., Rosenthal, W., Schultz, G., Wieland, T., Gierschick, P., Jakobs, K.H. 1988. The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides. Eur. J. Biochem. 175:51–55Google Scholar
  44. Somogyi, R., Batzer, A., Kolb, H.-A. 1989. Inhibition of electrical coupling in pairs of murine pancreatic acinar cells by OAG and isolated protein kinase. C. J. Membrane Biol. 108:273–282Google Scholar
  45. Somogyi, R., Kolb, H.-A. 1988. Cell-to-cell channel conductance during loss of gap junctional conductance in pairs of pancreatic acinar cells and Chinese hamster ovary cells. Pfluegers Arch. 412:54–65Google Scholar
  46. Somogyi, R., Kolb, H.-A. 1989. A G-protein mediates secretagogueinduced gap junctional channel closure in pancreatic acinar cells. FEBS Lett. 258:216–218Google Scholar
  47. Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol,4,5-triphosphate on isolated subcellular fractions of rat pancreas. J. Membrane Biol. 81:241–253Google Scholar
  48. Toescu, E.C., Lawrie, A.M., Petersen, O.H., Gallacher, D.V. 1992. Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine cells analysed by digital image microscopy. EMBO J. 11:1623–1629Google Scholar
  49. Waelbroeck, M., Robberecht, P., Coy, D.H., Camus, J.C., De Neef, P., Christophe, J. 1985. Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of(N-AC-Tyrl, DPhe2)-GRF(l-29)-NH2 as a VIP antagonist. Endocrinology 116:2643–2649Google Scholar
  50. Walsh, J.W. 1987. In: Physiology of the Gastrointestinal tract L.R Johnson, editor. Vol. 1, pp. 195–206. Raven, New YorkGoogle Scholar
  51. Wank, S.A., Jensen, R.T., Gardner, J.D. 1988. Kinetics of binding of cholecystokinin to pancreatic acini. Am. J. Physiol. 255:G106-G112Google Scholar
  52. Wooten, M.W., Wrenn, R.W. 1988. Linoleic acid is a potent activator of protein kinase C type III-α: isoform in pancreatic acinar cells; its role in amylase secretion. Biochem. Biophys. Res. Commun. 153:67–73Google Scholar
  53. Wrenn, R.W., Wooten, M.W. 1984. Dual calcium-dependent protein phosphorylation system in pancreas and their differential regulation by polymyxin B1. Life Sci. 35:267–276Google Scholar
  54. Yu, D.H., Huang, S.C., Wank, S.A., Mantey, S., Gardner, J.D., Jensen, R.T. 1990. Pancreatic receptors for cholecystokinin: evidence for three receptor classes. Am. J. Physiol. 258:G80-G85Google Scholar
  55. Yule, D.I., Williams, J.A. 1992. U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV180 in rat pancreatic acinar cells. J. Biol. Chem. 267:13830–13835Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • A. Ngezahayo
    • 1
  • H. -A. Kolb
    • 2
  1. 1.University of Konstanz, Faculty of BiologyKonstanzGermany
  2. 2.University of Tübingen, Institut of PhysiologyTübingenGermany

Personalised recommendations