Advertisement

Plant Cell Reports

, Volume 9, Issue 1, pp 26–29 | Cite as

Transformation of eggplant (Solanum melongena L.) using a binary Agrobacterium tumefaciens vector

  • G. L. Rotino
  • S. Gleddie
Article

Summary

Kanamycin resistant plants of Solarium melongena L. (eggplant) cv. Picentia were obtained following the cocultivation of leaf explants with Agrobacterium tumefaciens. A disarmed binary vector system containing the neomycin phosphotransferase (NPTII) gene as the selectable marker and chloramphenicol acetyltransferase (CAT) as a reporter gene was utilized. In vitro grown plants were used as sources of explants to produce transgenic plants on selective medium containing 100 mg/l kanamycin. The transformation and expression of the foreign genes was confirmed by DNA hybridizations, leaf disc assays, and by measuring NPTII and CAT enzyme activities. This technique is simple, rapid, efficient, and transgenic eggplants of this commercial cultivar have been transferred to soil where they have flowered and set seed.

Key words

Solanum melongena eggplant Agrobacterium tumefaciens kanamycin transformation shoot regeneration 

Abbreviations

CAT

chloramphenicol acetyltransferase

MS

Murashige and Skoog

NPTII

neomycin phosphotransferase

NOS

nopaline synthase

ZEA

zeatin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevan MW (1984) Nuc Acids Research 12: 8711–8721Google Scholar
  2. Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) Plant Mol Biol 11: 651–662Google Scholar
  3. Douglas GC, Keller WA, Setterfield G (1981) Can J Bot 59: 208–219Google Scholar
  4. Dumas de Vaulx R, Chambonnet D (1982) Agronomie 2: 983–988Google Scholar
  5. Feinberg, AP, Vogelstein B (1983) Analyt Biochem 132: 6–13Google Scholar
  6. Gamborg OL, Miller RA, Ojima K (1968) Exp Cell Res 50: 152–158Google Scholar
  7. Gleddie S, Keller WA, Setterfied G (1983) Can J Bot 61: 656–606Google Scholar
  8. Gleddie S, Keller WA, Setterfield G (1985) J Plant Physiol 119: 405–418Google Scholar
  9. Gleddie S, Keller WA, Setterfield G (1986) Theor Appl Genet 71: 613–621Google Scholar
  10. Guri A, Sink KC (1988a) Theor Appl genet 76: 490–496Google Scholar
  11. Guri A, Sink KC (1988b) J Plant Physiol 133: 52–55Google Scholar
  12. Komari T, Saito Y, Nakakido F, Kumashiro T (1989) Theor Appl Genet 77: 547–552Google Scholar
  13. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Lab, Cold Spring Harbor, New YorkGoogle Scholar
  14. McCormick S, Niedermeyer J, Fry J, Barnason A, Horsh R, Fraley R (1986) Plant Cell Rep 5: 81–84Google Scholar
  15. McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) Plant Mol Biol Rep 5: 380–386Google Scholar
  16. Murashige T, Skoog F (1962) Physiol Plant 15: 473–497Google Scholar
  17. Rotino GL, Falavigna A, Restaino F (1987) Capsicum Newsl 6: 89–90Google Scholar
  18. Schmidt R, Willmitzer L (1988) Plant Cell Rept 7: 583–586Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. L. Rotino
    • 1
  • S. Gleddie
    • 1
  1. 1.Plant Research Centre, Agriculture CanadaOttawaCanada

Personalised recommendations