Experimental Brain Research

, Volume 104, Issue 3, pp 534–540 | Cite as

The auditory pathway in cat corpus callosum

  • Stephanie Clarke
  • François de Ribaupierre
  • Victoria M. Bajo
  • Eric M. Rouiller
  • Rudolf Kraftsik
Research Note


The cortical auditory fields of the two hemispheres are interconnected via the corpus callosum. We have investigated the topographical arrangement of auditory callosal axons in the cat. Following circumscribed biocytin injections in the primary (AI), secondary (AII), anterior (AAF) and posterior (PAF) auditory fields, labelled axons have been found in the posterior two-thirds of the corpus callosum. Callosal axons labelled by small individual cortical injections did not form a tight bundle at the callosal midsagittal plane but spread over as much as one-third of the corpus callosum. Axons originating from different auditory fields were roughly topographically ordered, reflecting to some extent the rostro-caudal position of the field of origin. Axons from AAF crossed on average more rostrally than axons from AI; the latter crossed more rostrally than axons from PAF and AIL Callosal axons originating in a discrete part of the cortex travelled first in a relatively tight bundle to the telo-diencephalic junction and then dispersed progressively. In conclusion, the cat corpus callosum does not contain a sector reserved for auditory axons, nor a strictly topographically ordered auditory pathway. This observation is of relevance to neuropsychological and neuropathological observations in man.

Key words

Corpus callosum Auditory pathway Primary auditory field Tonotopy Cat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AEP, Ribaupierre Y de, Ribaupierre F de (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hear Res 83: 161–174Google Scholar
  2. Berlucchi G, Gazzaniga MS, Rizzolatti G (1967) Microelectrode analysis of transfer of visual information by the corpus callosum. Arch Ital Biol 105: 583–596Google Scholar
  3. Clarke S, Kraftsik R, Van der Loos H, Innocenti GM (1989) Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol 280: 231–253PubMedGoogle Scholar
  4. Clarke S, Ribaupierre F de, Rouiller EM, Ribaupierre Y de (1993) Several neuronal and axonal types form long intrinsic connections in the cat primary auditory cortical field (AI). Anat Embryol 188: 117–138Google Scholar
  5. Clarke S, Bajo-Lorenzana V, Rouiller EM, Ribaupierre F de, Kraftsik R (1994) Auditory axons in the cat corpus callosum (abstract). Experientia 50: 69Google Scholar
  6. Hubel DH, Wiesel TN (1967) Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J Neurophysiol 30: 1561–1573Google Scholar
  7. Imig TJ, Adrian HO (1977) Binaural columns in the primary field (AI) of cat auditory cortex. Brain Res 138: 241–257Google Scholar
  8. Imig TJ, Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J Comp Neurol 182: 637–660Google Scholar
  9. Imig TJ, Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. J Comp Neurol 192: 293–332Google Scholar
  10. Innocenti GM (1980) The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol 118: 124–188Google Scholar
  11. Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral Cortex, vol 5. Plenum, New York, pp 291–353Google Scholar
  12. Innocenti GM, Clarke S (1984) Bilateral transitory projections to visual areas from auditory cortex in kittens. Brain Res Dev Brain Res 14: 143–148Google Scholar
  13. King MA, Louis PM, Hunter BE, Walker DW (1989) Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative. Brain Res 497: 361–367Google Scholar
  14. Knight PL (1977) Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res 130: 447–467Google Scholar
  15. Koppel H, Innocenti GM (1983) Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat. Neurosci Lett 41: 33–40Google Scholar
  16. Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38: 231–249Google Scholar
  17. Middlebrooks JC, Dikes RW, Merzenich MM (1980) Binaural response — specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res 181: 31–48Google Scholar
  18. Nakamura H, Kanaseki T (1989) Topography of the corpus callosum in the cat. Brain Res 485: 171–175Google Scholar
  19. Payne BR, Siwek DF (1991) The visual map in the corpus callosum of the cat. Cereb Cortex 1: 173–188Google Scholar
  20. Reale RA, Imig TJ (1980) Tonotopic organization of auditory cortex in the cat. J Comp Neurol 192: 265–291Google Scholar
  21. Rouiller EM, Simm GM, Villa AEP, Ribaupierre Y de, Ribaupierre F de (1991) Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Exp Brain Res 86: 483–505Google Scholar
  22. Trevarthen C (1990) Integrative functions of the cerebral commissures. In: Boiler F, Grafman J (eds) Handbook of Neuropsychology, vol 4. Eisevier, Amsterdam, pp 49–83Google Scholar
  23. Van Buren JM, Borke RC (1972) Variations and connections of the human thalamus. 1. The nuclei and cerebral connections of the human thalamus. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, Berlin Heidelberg New York, pp 222–409Google Scholar
  25. Zingerle H (1912) Ueber einseitigen Schläfenlappendefekt beim Menschen. J Psychol Neurol 18: 205–238Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Stephanie Clarke
    • 1
  • François de Ribaupierre
    • 1
  • Victoria M. Bajo
    • 1
  • Eric M. Rouiller
    • 2
  • Rudolf Kraftsik
    • 3
  1. 1.Institut de PhysiologieUniversité de LausanneLausanneSwitzerland
  2. 2.Institut de PhysiologieUniversité de FribourgFribourgSwitzerland
  3. 3.Institut d'AnatomieUniversité de LausanneLausanneSwitzerland

Personalised recommendations