Plant Cell Reports

, Volume 9, Issue 2, pp 55–60 | Cite as

Meristem transformation of sunflower via Agrobacterium

  • Barbara Schrammeijer
  • Peter C. Sijmons
  • Peter J. M. van den Elzen
  • André Hoekema


For transformation of sunflower (Helianthus annuus L. cv. Zebulon), shoot apical meristems were dissected from seeds and cocultivated with a disarmed Agrobacterium tumefaciens strain harboring a binary vector carrying genes encoding GUS- and NPTII-activity. The influence of the media conditions, the time of cocultivation and the stage of the developing seed on shoot development and meristem transformation was analysed. Transformants were selected by their ability to grow on kanamycin. Transformation was confirmed by assays for GUS and NPTII. GUS-positive shoots were rooted on rockwool and transferred to soil. Transformation of shoot meristem cells occurred at low frequencies. Chimaeric expression of the two genes was observed in transformed plants. Integration of the foreign DNA in the sunflower genome was confirmed with the polymerase chain reaction.


Polymerase Chain Reaction Media Condition Kanamycin Binary Vector Apical Meristem 





Neomycin phosphotransferase II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binding H, Nehls R, Kock R, Finger J, Mordhorst G (1981) Z. Pflanzenphysiol. 101 S: 119–130Google Scholar
  2. Bohorova NE, Cocking EC, Power JB (1986) Plant Cell Reports 5: 256–258Google Scholar
  3. Bradford MM, (1976) Anal. Biochem. 72: 248–254CrossRefPubMedGoogle Scholar
  4. Espinasse A, Lay C (1989) Crop Sci. 29: 201–205Google Scholar
  5. Everett NP, Robinson KEP, Mascarenbas D (1987) Bio/Technology 5: 1201–1204Google Scholar
  6. Gasser CS, Fraley RT (1989) Science 244: 1293–1299Google Scholar
  7. Greco B, Tanzarella OA, Carrozzo G, Blanco A (1984) Plant Sci. Lett. 36: 73–77Google Scholar
  8. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) Nature 303: 179–180Google Scholar
  9. Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) J. Bacteriol. 168: 1291–1301Google Scholar
  10. Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J. 6: 3901–3907Google Scholar
  11. Jegla DE, Sussex JM (1989) Dev. Biol. 131: 215–22Google Scholar
  12. McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Bio/Technology 6: 923–926Google Scholar
  13. Murashige M, Skoog F (1962) Physiol. Plant. 15: 473–497Google Scholar
  14. Platt SG, Yang N-S (1987) Anal. Biochem. 162: 529–535Google Scholar
  15. Power CJ (1987) Am. J. Bot. 74: 497–503Google Scholar
  16. Reiss B, Sprengel R, Will H, Schaller H (1984) Gene 30: 217–223Google Scholar
  17. Schmilz P, Schnabl H (1989) J. Plant Physiol. 135: 223–227Google Scholar
  18. Ulian EC, Smith RH, Gould JH, McKnight TD (1988) In Vitro Cellular and Dev. Biol. 24: 951–954Google Scholar
  19. Vancanneyt G, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Mol. Gen. Genet. 220: 245–250Google Scholar
  20. Verwoerd TC, Dekker BMM, Hoekema A (1989) Nucl. Acids Res. 17: 2362Google Scholar
  21. Wilcox McCann A, Cooley G, van Dreser J (1988) Plant Cell Tissue Org. Cult. 14: 103–110Google Scholar
  22. Witrzens B, Scowcroft WR, Downes RW, Larkin PJ (1988) Plant Cell Tissue Org. Cult. 13: 61–76Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Barbara Schrammeijer
    • 1
  • Peter C. Sijmons
    • 1
  • Peter J. M. van den Elzen
    • 1
  • André Hoekema
    • 1
  1. 1.MOGEN International NVLeidenThe Netherlands

Personalised recommendations