Molecular and Cellular Biochemistry

, Volume 113, Issue 1, pp 1–15 | Cite as

Relevance of glutamine metabolism to tumor cell growth

  • Miguel Angel Medina
  • Francisca Sánchez-Jiménez
  • Javier Márquez
  • Ana Rodríguez Quesada
  • Ignacio de Castro Núñez
Article

Key words

glutamine tumor cells glutaminase glutamine transport glutamine analogues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Medina MA, Nuñez de Castro I: Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem 22: 681–683, 1990Google Scholar
  2. 2.
    Lazo P: Amino acids and glucose utilization by different metabolic pathways in ascites-tumour cells. Eur J Biochem 117: 19–25, 1981Google Scholar
  3. 3.
    Sauer LA, Dauchy RT: Ketone body, glucose, lactic acid and amino acid utilization by tumors in vivo in fasted rats. Cancer Res 43: 3497–3503, 1983Google Scholar
  4. 4.
    Segura JA, Medina MA, Alonso FJ, Sánchez-Jiménez F, Núñez de Castro I: Glycolysis and glutaminolysis in perifused Ehrlich ascites tumour cells. Cell Biochem Function 7: 7–10, 1989Google Scholar
  5. 5.
    Spector AA, Steinberg D: The utilization of unsterified palmitate by Ehrlich ascites tumor cells. J Biol Chem 240: 3747–3753, 1965Google Scholar
  6. 6.
    Baker N, Sandborg C, Morris D, Ookhtens M: Competition for host essential and nonessential fatty acids in Ehrlich ascites carcinoma in mice. Cancer Res 37: 2218–2225, 1974Google Scholar
  7. 7.
    Ookhtens M, Baker N: Fatty acid oxidation to H2O by Ehrlich ascites carcinoma in mice. Cancer Res 39: 973–980, 1979Google Scholar
  8. 8.
    Carrascosa JM, Martínez P, Núñez de Castro I: Nitrogen movement between host and tumor in mice inoculated with Ehrlich ascites tumor cells. Cancer Res 44: 3831–3835, 1984Google Scholar
  9. 9.
    Pérez-Rodríguez J, Sánchez-Jiménez F, Márquez J, Medina MA, Quesada AR, Núñez de Castro I: Malate-citrate cycle during glycolysis and glutaminolysis in Ehrlich ascites tumor cells. Biochimie 69: 469–474, 1987Google Scholar
  10. 10.
    Medina MA, Sánchez-Jiménez F, Quesada AR, Márquez J, Núñez de Castro I: Effect of palmitate, acetate and glucose on glutamine metabolism in Ehrlich ascites tumor cells. Biochimie 70: 833–834, 1988Google Scholar
  11. 11.
    Mider GB: Some aspects of nitrogen and energy metabolism in cancerous subjects. Cancer Res 11: 821–829, 1951Google Scholar
  12. 12.
    Shapot VS: Biochemical Aspects of Tumour Growth. Mir, Moscow, 1980Google Scholar
  13. 13.
    Argilés JM, Azcón-Bieto J: The metabolic environment of cancer. Mol Cell Biochem 81: 3–17, 1988Google Scholar
  14. 14.
    Crabtree B, Newsholme EA: A quantitative approach to metabolic control. Current Topics Cell Regul 25: 21–76, 1985Google Scholar
  15. 15.
    De la Piedra C, Rubert LD, Jerez E, Castro-Mendoza HJ: Glucagon and epinephrine effect on blood-glucose levels in rats carrying Yoshida solid sarcoma and Walker-256 carcinosarcoma. Biomedicine 31: 139–141, 1979Google Scholar
  16. 16.
    Kawamura I, Moldawer LL, Keeman RA, Batist G, Bothe A, Bristian BR, Blackburn GL: Altered amino-acid kinetics in rats with progressive tumor growth. Cancer Res 42: 824–829, 1982Google Scholar
  17. 17.
    Felig P: Amino acid metabolism in man. Annu Rev Biochem 44: 933–955, 1975CrossRefPubMedGoogle Scholar
  18. 18.
    Márquez J: Estudio dinámico de aminoácidos fibres en el sistema huésped-tumor en ratones inoculados con el carcinoma ascitico de Ehrlich. Ph D Thesis. Málaga, 1987Google Scholar
  19. 19.
    Máquez J, Sánchez-Jiménez F, Medina MA, Quesada AR, Núñez de Castro I: Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys 268: 667–675, 1989Google Scholar
  20. 20.
    Carrascosa JM: Metabolismo del nitrógeno en células de tumor ascítico de Ehrlich. Función de la glutamina y el amonio. Ph D Thesis. Universidad Autónoma de Madrid, 1983Google Scholar
  21. 21.
    Moreadith RW, Lehninger AL: The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. J Biol Chem 259: 6215–6221, 1984Google Scholar
  22. 22.
    Stein TP, Oram-Smith JC, Leskiw MJ, Wallace HW, Miller EE: Tumor causes changes in host protein synthesis under different dietary situations. Cancer Res 36: 3936–3940, 1976Google Scholar
  23. 23.
    Shapot VS: On the multiform relationships between the tumor and the host. In Advances in Cancer Research, Vol 30, Academic Press, New York, 1979, pp 89–150Google Scholar
  24. 24.
    Levin L, Gever W: Metabolic alterations in cancer I. SA Med J 59: 518–521, 1981Google Scholar
  25. 25.
    Levin L, Gever W: Metabolic alterations in cancer II. SA Med J 59: 553–556, 1981Google Scholar
  26. 26.
    Currie G, Corrie A: Cancer, a disease of individuals. Relationship between host and tumor. In Cancer, the Biology of Malignant Disease. Casterfield Press, Northampton, 1982, pp 39–59Google Scholar
  27. 27.
    Van Eys J: Nutrition and cancer: physiological interrelationships. Annu Rev Nutr 5: 435–461, 1985Google Scholar
  28. 28.
    Meister A; Catalytic mechanism of glutamine synthetase; overview of glutamine metabolism. In Glutamine: Metabolism, Enzymology, and Regulation (J Mora, J Palacios (eds.)) Academic Press, New York, 1980, pp 1–40Google Scholar
  29. 29.
    Krebs HA: Glutamine metabolism in the animal body. In Glutamine: Metabolism, Enzymology, and Regulation (J Mora, J Palacios (eds.)) Academic Press, New York, 1980, pp 319–329Google Scholar
  30. 30.
    Zielke HR, Zielke CL, Ozand PT: Glutamine: a major energy source for cultured mammalian cells. Proc Fed Amer Soc Exp Biol 43: 121–125, 1984Google Scholar
  31. 31.
    Meister A: Enzymology of glutamine. In Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed)) Springer-Verlag, Berlin, 1984, pp 3–15Google Scholar
  32. 32.
    Kovacević Z, McGivan JD: Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63: 547–605, 1983Google Scholar
  33. 33.
    McKeehan WL: Glutaminolysis in animal cells. In Carbohydrate Metabolism in Cultured Cells, Plenum Press, New York, 1986, pp 111–150Google Scholar
  34. 34.
    McKeehan WL: Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6: 635–650, 1982Google Scholar
  35. 35.
    Curthoys AP, Weiss RF: Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem 249: 3261–3266, 1974Google Scholar
  36. 36.
    Kvamme E: Enzymes of cerebral glutamine metabolism. In Glutamine Metabolism in Mammalian Tissues (D. Häussinger (ed.)), Springer-Verlag, Berlin, 1984, pp 32–48Google Scholar
  37. 37.
    Wu G, Thompson JR, Baracos VE: Glutamine metabolism in skeletal muscle from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J 274: 769–774, 1991Google Scholar
  38. 38.
    Parry-Billings M, Newsholme EA: The possible role of glutamine substrate cycles in skeletal muscle. Biochem J 279: 327–328, 1991Google Scholar
  39. 39.
    Watford M: Does glutamine regulate skeletal muscle protein turnover? Trends Biochem Sci 14: 1–2, 1989Google Scholar
  40. 40.
    Blackshear PJ, Holloway PAM, Alberti KGMM: Factors regulating amino acid release from extrasplanchnic tissues in the rat. Interactions of alanine and glutamine. Biochem J 150: 379–387, 1975Google Scholar
  41. 41.
    Lund P: Glutamine metabolism in the rat. FEBS Lett 117: K86-K92, 1980Google Scholar
  42. 42.
    Lund P: Metabolism of glutamine, glutamate and aspartate. In Nitrogen Metabolism in Man, Applied Science Publishers, London, 1981, pp 155–168Google Scholar
  43. 43.
    Windmüller HG: Enterohepatic aspects of glutamine metabolism. In Glutamine: Metabolism, Enzymology, and Regulation (J Mora, J Palacios (eds.)) Academic Press, New York, 1980, pp 235–258Google Scholar
  44. 44.
    Häussinger D: Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133: 269–275, 1983Google Scholar
  45. 45.
    Gebhardt R, Mecke D: Cellular distribution and regulation of glutamine synthetase in liver. In Glutamine Metabolism in Mammalian Tissues, Springer-Verlag, Berlin, 1984, pp 98–121Google Scholar
  46. 46.
    McGivan JD, Lacey JH, Joseph SK: Localization and some properties of phosphate-dependent glutaminase in disrupted liver mitochondria. Biochem J 192: 537–542, 1980Google Scholar
  47. 47.
    Matsuno T: Bioenergetics of tumor cells. Glutamine metabolism in tumor cell mitochondria. Int J Biochem 19: 303–307, 1987Google Scholar
  48. 48.
    Sies H, Häussinger D: Hepatic glutamine and ammonia metabolism. Nitrogen and redox balance and the intercellular glutamine cycle. In Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed.)) Springer-Verlag, Berlin, 1984, pp 78–97Google Scholar
  49. 49.
    Watford M, Smith EM: Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem J 267: 265–267, 1990Google Scholar
  50. 50.
    Häussinger D, Sies H: Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur J Biochem 101: 179–184, 1979Google Scholar
  51. 51.
    Häussinger D, Gerok W, Sies H: Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochem Biophys Acta 755: 272–278, 1983Google Scholar
  52. 52.
    Reich JR, Sel'kov EE: Energy Metabolism of the Cell, Academic Press, London, 1981Google Scholar
  53. 53.
    Newsholme EA, Start C: Regulation in Metabolism, Wiley, New York, 1980Google Scholar
  54. 54.
    Welbourne TC: Hepatic glutaminase flux regulation of glutamine homeostasis. Studies in vivo. Biol Chem Hoppe-Seyler 367: 301–305, 1986Google Scholar
  55. 55.
    Quesada AR: Ciclos de la glutamina en el sistema huésped-tumor. Aislamiento y caracterización de la glutaminasa tumoral. Ph D Thesis. Málaga, 1987Google Scholar
  56. 56.
    Owen EE, Robinson RR: Amino acid extrusion and NH3 metabolism by the human kidney during the prolonged administration of NH4Cl. J Clin Invest 42: 263–276, 1963Google Scholar
  57. 57.
    Lemieux G, Baverel G, Vinay P, Wadoux P, Fournel P: Glutamine synthetase and glutamyltransferase in the kidney of man, dog, and rat. Amer J Physiol 231: 1068–1073, 1976Google Scholar
  58. 58.
    Tizianello A, De Ferrari G, Garibotto G, Guerreri G, Robaudo C: Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65: 1162–1173, 1980Google Scholar
  59. 59.
    Squires EJ, Hall DE, Brosnan JJ: Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochem J 160: 125–128, 1976Google Scholar
  60. 60.
    Lyon ML, Pitts RF: Species differences in renal glutamine synthesis in vivo. Amer J Physiol 216: 117–122, 1969Google Scholar
  61. 61.
    Baverel G, Michoudet C, Martin G: Role of fatty acids in simultaneous regulation of flux through glutaminase and glutamine synthetase in rat kidney cortex. In Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed.)) Springer-Verlag, Berlin, 1984, pp 187–202Google Scholar
  62. 62.
    Squires EJ, Brosnan JJ: Measurements of the turnover rate of glutamine in normal and acidotic rats. Biochem J 210: 277–280, 1983Google Scholar
  63. 63.
    McGeer PL, McGeer EG: Amino acid neurotransmitters. In Basic Neurochemistry (GJ Siegel, R Wayne Albers, BW Agranoff, R Katzman (eds.)) Little, Brown & Co., Boston, 1981, pp 233–253Google Scholar
  64. 64.
    Bradford HF: Chemical Neurobiology. Freeman, New York, 1986Google Scholar
  65. 65.
    Cooper AJL, McDonald JM, Gelbard AS, Gidhall RF, Duffy TE: The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 254: 4982–4992, 1979Google Scholar
  66. 66.
    Cooper AJL, Vergara F, Duffy TE: Cerebral glutamine synthetase. Neurol Neurobiol 7: 77–93, 1983Google Scholar
  67. 67.
    Kvamme E: Enzymes of cerebral glutamine metabolism. In Glutamine Metaboilism in Mammalian Tissues (D Häussinger (ed.)) Springer-Verlag, Berlin, 1984, pp 32–48Google Scholar
  68. 68.
    Berl S, Clarke DD: Cerebral glutamine/glutamate interrelationships and metabolis compartmentation. In Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed.)) Springer-Verlag, Berlin, 1984, pp 223–234Google Scholar
  69. 69.
    Tapia R: Glutamine metabolism in brain. In Glutamine: Metabolism, Enzymology, and Regulation (J Mora, J Palacios (eds.)) Academic Press, New York, 1980, pp 285–297Google Scholar
  70. 70.
    Windmüller HG: Glutamine utilization by the small intestine. In Advances in Enzymology. Vol 53. Wiley, New York, 1982, pp 201–237Google Scholar
  71. 71.
    Windmüller HG, Spaeth AE: Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249: 5070–5079, 1974Google Scholar
  72. 72.
    Windmüller HG: Metabolism of vascular and luminal glutamine by intestinal mucosa in vivo. In Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed.)) Springer-Verlag, Berlin, 1984, pp 61–77Google Scholar
  73. 73.
    DeWys WD: Nutritional abnormalities in cancer. In Nutrition and Metabolism in Cancer (R Kluthe, GW Löhr (eds.)) George Thieme Verlag, Stuttgart, 1981, pp 8–16Google Scholar
  74. 74.
    Knox WE: The enzymic pattern of neoplastic tissue. In Advances in Cancer Research. Vol 10. Academic Press, New York, 1967, pp 117–161Google Scholar
  75. 75.
    Snell K: Alanine as a gluconeogenic carrier. Trends Biochem Sci 4: 124–128, 1979Google Scholar
  76. 76.
    Quesada AR, Medina MA, Márquez J, Sánchez-Jiménez F, Núñez de Castro I: Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res 48: 1551–1553, 1988Google Scholar
  77. 77.
    Rivera S: Introducció al metabolisme dels aminoacids al carcinoma pulmonar de Lewis. MSc Thesis, University of Barcelona, 1985Google Scholar
  78. 78.
    Argiles JM, López-Soriano FJ: The effects of tumour necrosis factor-alpha (cachectin) and tumour growth on hepatic amino acid utilization in the rat. Biochem J 266: 123–126, 1990Google Scholar
  79. 79.
    Chance WT, Cao L, Kim MW, Nelson JL, Fischer JE: Reduction of tumor growth following treatment with a glutamine antimetabolite. Life Sci 42: 87–94, 1988Google Scholar
  80. 80.
    Pain VM, Garlick PJ: The effect of an Ehrlich ascites tumour on the rate of protein synthesis in muscle and liver of the host. Biochem Soc Trans 8: 354, 1980Google Scholar
  81. 81.
    Lopes MN, Black P, Ashford AJ, Pain VM: Protein metabolism in tumour-bearing mouse. Biochem J 264: 713–719, 1989Google Scholar
  82. 82.
    Wagles SR, Morris HP, Weber G: Comparative biochemistry of hepatomas. V. Cancer Res 23: 1003–1007, 1963Google Scholar
  83. 83.
    Márquez J, Núñez de Castro I: Mouse liver free amino acids during the development of Ehrlich ascites tumour. Cancer Lett 58: 221–224, 1991Google Scholar
  84. 84.
    Argilés JM, López-Soriano FJ: The energy state of tumorbearing rats. J Biol Chem 266: 2978–2982, 1991Google Scholar
  85. 85.
    Tessitore L, Bonelli G, Baccino FM: Early development of protein metabolic perturbations in the liver and skeletal muscle of tumour-bearing rats. Biochem J 241: 153–159, 1987Google Scholar
  86. 86.
    Urdiales JL, Medina MA, Núñez de Castro I, Sánchez-Jiménez F: Early systemic effects on the hepatic mitochondria of tumour bearing mice. Cancer Lett 44: 179–183, 1989Google Scholar
  87. 87.
    Márquez J, Matés JM, Quesada AR, Medina MA, Núñez de Castro I, Sánchez-Jiménez F: Altered ornithine metabolism in tumor-bearing mice. Life Sci 45: 1877–1884, 1989Google Scholar
  88. 88.
    Tong J, Harrison G, Curthoys NP: The effect of metabolic acidosis on the synthesis and turnover of rat renal phosphatedependent glutaminase. Biochem J 233: 139–144, 1986Google Scholar
  89. 89.
    Andersson G, Heby O: Kinetics of cell proliferation and polyamine synthesis during Ehrlich ascites tumor growth. Cancer Res 37: 4361–4366, 1977Google Scholar
  90. 90.
    Müller F: Stoffwechseluntersuchungen bei Krebskranken. Ztschr Klin Med 16: 496, 1989Google Scholar
  91. 91.
    Shrisvastava GC, Quastet JH: Malignancy and tissue metabolism. Nature 196: 876–880, 1962Google Scholar
  92. 92.
    Kit S, Graham OL: Proteins of amino acid biosynthesis from labeled glucose. Cancer Res 16: 117, 1956Google Scholar
  93. 93.
    Busch H, Fujiwara E, Keer L: Metabolic patterns for glucose-1-C14 in tissues of tumor-bearing rats. Cancer Res 20: 50, 1960Google Scholar
  94. 94.
    Johnstone RM: Electrogenic amino acid transport. Can J Physiol Pharmacol 57: 1–15, 1979Google Scholar
  95. 95.
    Johnstone RM, Scholefield PG: Amino acid transport in tumor cells. In Advances in Cancer Research. Vol 9. Academic Press, New York 1982, pp 143Google Scholar
  96. 96.
    Christensen HN: Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70: 43–77, 1990Google Scholar
  97. 97.
    Kilberg MS, Handlogten ME, Christensen HN: Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem 255: 4011–4019, 1980Google Scholar
  98. 98.
    Rennie MJ, Watt PW, Hundal HS, Idström JP, Bylund-Fellenius AC, Mann GE: The use of the perfused rat hindlimb for studies of sugar and amino acid transport. In Carrier Mediated Transport from Blood to Tissues. Longmans, London, 1985, pp 333–338Google Scholar
  99. 99.
    Medina MA: Glutamina y tumor. Transporte y metabolismo. Ph D Thesis, Málaga, 1989Google Scholar
  100. 100.
    Medina MA, Quesada AR, Núñez de Castro I: L-Glutamine transport in native vesicles isolated from Ehrlich ascites tumor cell membranes. J Bioenerg Biomembranes 23: 689–697, 1991Google Scholar
  101. 101.
    Oxender DL, Christensen HN: Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238: 3686–3699, 1963Google Scholar
  102. 102.
    Christensen HN, Liang M, Archer EG: A distinct Na+-requir-ing transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem 242: 5237–5246, 1967Google Scholar
  103. 103.
    McCormick JI, Johnstone RM: Evidence for an essential suithydryl group at the substrate binding side of the A system transport of Ehrlich cell plasma membranes. Biochem Cell Biol 68: 512–519, 1990Google Scholar
  104. 104.
    Huber KR, Rosenfeld H, Roberts J: Uptake of glutamine antimetabolites 6-diazo-5-oxo-L-norleucine (DON) and Acivicin in sensitive and resistent tumor cell lines. Int J Cancer 41: 752–755, 1988Google Scholar
  105. 105.
    Sastrasinh S, Sastrasinh M: Effect of Acivicin on glutamine transport by rat renal brush border membrane vesicles. J Lab Clin Med 108: 301–308, 1986Google Scholar
  106. 106.
    Low SY, Taylor PM, Ahmed A, Pogson CI, Rennie MJ: Substrate-specificity of glutamine transporters in membrane vesicles from rat liver and skeletal muscle investigated using amino acid analogues. Biochem J 278: 105–111, 1991Google Scholar
  107. 107.
    McCormick JI, Johnstone RM: Simple and effective purification of a Na+-dependent amino acid transport system from Ehrlich ascites cell plasma membranes. Proc Natl Acad Sci USA 85: 7877–7881, 1988Google Scholar
  108. 108.
    Klingenberg M: Overview on mitochondrial metabolite transport systems. Methods Enzymol 56: 245–252, 1979Google Scholar
  109. 109.
    Palmieri F, Klingenberg M: Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol 56: 279–301, 1979Google Scholar
  110. 110.
    Williamson JR, Viale RO: Methodology for transport studies. Graphical and computer curve fitting methods for glutamate and aspartate efflux kinetics. Methods Enzymol 56: 252–278, 1979Google Scholar
  111. 111.
    LaNoue KF, Schoolweth AC: Metabolic transport in mitochondria. Annu Rev Biochem 48: 871–922, 1979Google Scholar
  112. 112.
    Kovacevic Z, McGivan JD: Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed.)) Springer-Verlag, Berlin, 1984, pp 49–58Google Scholar
  113. 113.
    Kovacević Z, McGivan JD, Chappell JB: Condition for activity of glutaminase in kidney mitochondria. Biochem J 118: 265–274, 1970Google Scholar
  114. 114.
    Brosnan JT, Hall B: The transport and metabolism of glutamine by kidney cortex mitochondria from normal and acidotic rats. Biochem J 164: 331–337, 1977Google Scholar
  115. 115.
    Simpson DP, Adam W: Glutamine transport and metabolism by mitochondria from dog renal cortex. J Biol Chem 250: 8148–8158, 1975Google Scholar
  116. 116.
    Goldstein L: Glutamine transport by mitochondria isolated from normal and acidotic rats. Amer J Physiol 229: 1027–1033, 1975Google Scholar
  117. 117.
    Kovacevic Z: Importance of the flux of phosphate across the inner membrane of kidney mitochondria for the activation of glutaminase and the transport of glutamine. Biochim Biophys Acta 430: 399–412, 1976Google Scholar
  118. 118.
    Joseph SK, Meijer AJ: The inhibitory effect of sulfhydryl reagents on the transport and hydrolysis of glutamine in rat liver mitochondria. Eur J Biochem 119: 523–529, 1981Google Scholar
  119. 119.
    Goldstein L, Botlan JM: Renal mitochondrial glutamine transport and metabolism. Studies with rapid-mixing, rapid filtration technique. Amer J Physiol 234: F514–521, 1978Google Scholar
  120. 120.
    Kovacević Z, Bajin K: Kinetics of glutamine efflux from liver mitochondria loaded with the 14C-labeled substrate. Biochem Biophys Acta 687: 291–295, 1982Google Scholar
  121. 121.
    Sastrasinh S, Sastrasinh M: Glutamine transport in submitochondrial particles. Am J Physiol 257: F1050–1058, 1989Google Scholar
  122. 122.
    Segura JA: Glutaminasa y transporte mitochondrial de glutamina en células tumorales. Ph D Thesis, Málaga, 1991Google Scholar
  123. 123.
    Weber G, Lui MS, Seboldt J, Faderan MA: Molecular targets of anti-glutamine therapy with Acivicin in cancer cells. In Glutamine Metabolism in Mammalian Tissues (D Häussinger (ed.) Springer-Verlag, Berlin, 1984, pp 278–291Google Scholar
  124. 124.
    Weber G, Prajda N, Lui MS, Denton JE, Aoki T, Sebolt J, Zhen YS, Burt ME, Faderan MA, Reardon MA: Multi-enzyme-targeted chemotherapy by Acivicin and actinomycin. Adv Enzyme Regul 20: 75–96, 1982Google Scholar
  125. 125.
    Bresler JP, De Vellis J: Neoplastic transformation of newborn rat astrocytes in culture. Brain Res 348: 21–27, 1985Google Scholar
  126. 126.
    Matsuno T, Hirai H: Glutamine synthetase and glutaminase activities in various hepatoma cells. Biochem Int 19: 219–225, 1989Google Scholar
  127. 127.
    Huang YZ, Knox WE: A comparative study of glutaminase isozymes in rat tissues. Enzyme 21: 408–426, 1976Google Scholar
  128. 128.
    Brand K: Glutamine and glucose metabolism during thymocyte proliferation. Biochem J 228: 353–361, 1985Google Scholar
  129. 129.
    Williams WJ, Manson LA: Glutaminase of the human malignant cell, strain HeLa. J Biol Chem 232: 229–236, 1958Google Scholar
  130. 130.
    Kovacević Z: Distribution of glutaminase isoenzymes in kidney cells. Biochim Biophys Acta 334: 199–207, 1974Google Scholar
  131. 131.
    Quesada AR, Sánchez-Jiménez F, Pérez-Rodriguez J, Márquez J, Medina MA, Núñez de Castro I: Purification of phosphatedependent glutaminase from isolated mitochondria of Ehrlich ascites-tumour cells. Biochem J 225: 1031–1036, 1988Google Scholar
  132. 132.
    Martinez P, Carrascosa JM, Sánchez-Jiménez F, Olavarria JS, Núñez de Castro I; Cellular compartmentation of Ehrlich ascites tumor cells. Rev Esp Fisiol 40: 405–410, 1984Google Scholar
  133. 133.
    Medina MA, Quesada AR, Márquez J, Sánchez-Jiménez F, Núñez de Castro I: Inorganic phosphate and energy charge compartmentation in Ehrlich ascites tumour cells in the pres ence of glucose and/or glutamine. Biochem Int 16: 713–718, 1988Google Scholar
  134. 134.
    Sri-Pathmanathan RM, Braddock O, Brindle KM: 31P-NMR studies of glucose and glutamine metabolism in cultured mammalian cells. Biochim Biophys Acta 1051: 131–137, 1990Google Scholar
  135. 135.
    Moreadith RW, Lehninger AL: Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria. J Biol Chem 259: 6222–6227, 1984Google Scholar
  136. 136.
    Sánchez-Jiménez F, Martinez P, Núñez de Castro I, Olavarria JS: The function of redox shuttles during aerobic glycolysis in two strains of Ehrlich ascites tumor cells. Biochimie 67: 259–264, 1985Google Scholar
  137. 137.
    Coles NW, Johnstone RM: Glutamine metabolism in Ehrlich ascites carcinoma cells. Biochem J 83: 284–291, 1961Google Scholar
  138. 138.
    Medina MA, Sánchez-Jiménez F, Márquez J, Pérez-Rodriguez J, Quesada AR, Núñez de Castro I: Glutamine and glucose as energy substrates for Ehrlich ascites tumour cells. Biochem Int 16: 339–347, 1988Google Scholar
  139. 139.
    Kallinowski F, Runkel S, Fortmeyer HP, Förster H, Vaupel P: L-Glutamine: a major substrate for tumor cells in vivo? J Cancer Res Clin Oncol 113: 209–215, 1987Google Scholar
  140. 140.
    Gauthier T, Denis-Pouxviel C, Murat JC: Respiration of mitochondria isolated from differentiated and undifferentiated HT29 colon cancer cells in the presence of various substrates and ADP generating systems. Int J Biochem 22: 411–417, 1990Google Scholar
  141. 141.
    Reitzer LJ, Wice BM, Kennell D: Evidence that glutamate, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254: 2667–2676, 1979Google Scholar
  142. 142.
    Olavarria JS, Galindo C, Montero M, Baquero Y, Vitorica J, Satústregui J: Measurement of ‘in situ’ mitochondrial membrane potential in Ehrlich ascites tumor cells during aerobic glycolysis. Biochem Biophys Acta 935: 322–332, 1988Google Scholar
  143. 143.
    Medina MA, Núñez de Castro I: Evidence of an intracellular dissipative structure. Z Naturforsch 43c: 793–794, 1988Google Scholar
  144. 144.
    Ahluwalia GS, Grem JL, Hao Z, Cooney DA: Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 46: 243–271, 1990CrossRefPubMedGoogle Scholar
  145. 145.
    Catane R, von Hoff DD, Glaubiger DL, Muggia FM: Azaserine, DON, and azotomycin. Three diazo analogs of L-glutamine with clinical antitumor activity. Cancer Treat Rep 63: 1033–1038Google Scholar
  146. 146.
    Ovejera AA, Houchens DP, Catane R, Sheridan MA, Muggia FM: Efficacy of 6-diazo-5-oxo-L-norleucine and N-N-gamma-glutamyl-6-diazo-5-oxo-norleucinyl-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Res 39: 3220–3224, 1979Google Scholar
  147. 147.
    Kisner DL, Catane R, Muggia FM: The rediscovery of DON. Recent Results Cancer Res 74: 258–263, 1980Google Scholar
  148. 148.
    Kovach JS, Eagan RT, Powis G, Rubin J, Creagan ET, Moertel CG: Phase I and pharmacokinetic studies of DON. Cancer Treat Rep 65: 1031–1036, 1981Google Scholar
  149. 149.
    Poster DS, Bruno S, Penta J, Neil GL, McGovren JP: Acivicin. An antitumor antibiotic. Cancer Clin Trials 4: 327–330, 1981Google Scholar
  150. 150.
    Kemp AJ, Lyons SD, Christopherson RI: Effects of acivicin and dichloroallyl lawsone upon pyrimidine biosynthesis in mouse L1210 leukemia cells. J Biol Chem 261: 14891–14895, 1986Google Scholar
  151. 151.
    Prajda N: Enzyme targets of antiglutamine agents in cancer chemotherapy. Adv Enz Regul 24: 207–223, 1985Google Scholar
  152. 152.
    Sebolt JS, Aoki T, Eble JN, Glover JL, Weber G: Inactivation by acivicin of carbamoyl-phosphate synthetase II of human colon carcinoma. Biochem Pharmacol 34: 97–100, 1985Google Scholar
  153. 153.
    Weber G, Natsumeda Y, Lui MS, Faderan MA, Liepnieks JJ, Elliot WL: Control of enzymic programs and nucleotide pattern in cancer cells by acivicin and tiazofurin. Adv Enzyme Regul 22: 69–93, 1984Google Scholar
  154. 154.
    Lui MS, Kizaki H, Weber G: Biochemical pharmacology of acivicin in rat hepatoma cells. Biochem Pharmacol 31: 3469–3473, 1982Google Scholar
  155. 155.
    Ardalan B, Arakawa M, Villacorte D, Jayaram H, Cooney DA: Effect of L-glutamine antagonists on 5-phosphoribosyl 1-pyrophosphate levels in P388 leukemia and in murine colon adenocarcinomas in vivo. Biochem Pharmacol 31: 1509–1513, 1982Google Scholar
  156. 156.
    Hartman SC: Glutaminases and gamma-glutamil transferases. The Enzymes 4: 79–100, 1971Google Scholar
  157. 157.
    Chance WT, Cao L, Kim MW, Nelson JL, Fischer JE: Reduction of tumor growth following treatment with a glutamine antimetabolite. Life Sci 42: 87–94, 1988Google Scholar
  158. 158.
    Fischer PH, Pamukcu R, Bittner G, Willson JK: Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole. Cancer Res 44: 3355–3359, 1984Google Scholar
  159. 159.
    Klimberg VS, Souba WW, Salloum RM, Plumpey DA, Cohen FS, Dolson DJ, Bland KI, Copeland EM: Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J Surg Res 48: 319–323, 1990Google Scholar
  160. 160.
    Chance WT, Cao LQ, Fischer JE: Response of tumor and host to hyperalimentation and antiglutamine treatments. J Parenter Enteral Nutr 14: 122–128, 1990Google Scholar
  161. 161.
    Chance WT, Cao L, Fischer JE: Insulin and acivicin improve host nutrition and prevent tumor growth during total parenteral nutrition. Ann Surg 208: 524–531, 1988Google Scholar
  162. 162.
    Williams MG, Earhart RH, Bailey H, McGovren JP: Prevention of central nervous system toxicity of the antitumor antibiotic acivicin by concomitant infusion of an amino acid mixture. Cancer Res 50: 5475–5480, 1990Google Scholar
  163. 163.
    Futami H, Shiotani T, Yamaji Y, Yamauchi N, Irino S: Effects of the combination of acivicin and cis-diammine-dichloroplatinum (II) on thymidylate synthesis of A549 lung cancer cells. Biochem Biophys Res Commun 161: 31–37, 1989Google Scholar
  164. 164.
    Vila J, Thomasset N, Navarro C, Dore JF: In vitro and in vivo anti-tumor activity of L-glutamic acid gamma-monohydroxamate against L1210 leukemia and B16 melanoma. Int J Cancer 45: 737–743, 1990Google Scholar
  165. 165.
    Earhart RH, Amato DJ, Chang AY, Borden EC, Shiraki M, Dowd ME, Comis RL, Davis TE, Smith TJ: Phase II trial of 6-diazo-5-oxo-L-norleucine versus aclacinomycin-A in ad vanced sarcomas and mesotheliomas. Invest New Drugs 8: 113–119, 1990Google Scholar
  166. 166.
    Maroun JA, Maksymiuk A, Eisenhauer E, Stewart DJ, Young V, Pater J: Phase II study of acivicin in non-small cell lung cancer: a National Cancer Institute of Canada Study. Cancer Treat Rep 70: 1327–1328, 1986Google Scholar
  167. 167.
    Adolphson CC, Ajani JA, Stroehlein JR, Barlogie B, Bodey GP, Korinek J, Bedikian AY: Phase II trial of acivicin in patients with advanced colorectal carcinoma. Am J Clin Oncol 9: 189–191, 1986Google Scholar
  168. 168.
    McGuire WP, Blessing JA, DiSaia PJ, Buchsbaum HJ: Phase II trial of acivicin in patients with advanced epithelial ovarian carcinoma. Invest New Drugs 4: 49–52, 1986Google Scholar
  169. 169.
    McGuinness EE, Morgan RG, Levison DA, Hopwood D, Wormsley KG: Interaction of azaserine and raw soya flour on the rat pancreas. Scand J Gastroenterol 16: 49–56, 1981Google Scholar
  170. 170.
    Roebuck BD, Baumgartner KJ, Longnecker DS: Growth of pancreatic foci and development of pancreatic cancer with a single dose of azaserine in the rat. Carcinogenesis 8: 1831–1835, 1987Google Scholar
  171. 171.
    Learn DB, Thomas EL: Inhibition of tumor cell glutamine uptake by isolated neutrophils. J Clin Invest 82: 789–796, 1988Google Scholar
  172. 172.
    Kien CL, Holcenberg JS: Nitrogen utilization in mice bearing Ehrlich ascites tumor treated with Acinetobacter glutaminaseasparaginase. Cancer Res 41: 2051–2055, 1981Google Scholar
  173. 173.
    Kien CL, Holcenberg JS: Amino acid utilization and urine protein excretion in children treated with succinylated Acinetobacter glutaminase-asparaginase. Cancer Res 41: 2056–2062, 1981Google Scholar
  174. 174.
    Rosenfeld H, Roberts J: Enhancement of antitumor activity of glutamine antagonists 6-diazo-5-oxo-L-norleucine and Acivicin in cell culture by glutaminase-asparaginase. Cancer Res 41: 1324–1328, 1981Google Scholar
  175. 175.
    Gallagher MP, Marshall RD, Wilson R: Asparaginase as a drug for treatment of acute lymphoblastic leukaemia. Essays Biochem 24: 1–40, 1989Google Scholar
  176. 176.
    Lebedeva ZI, Kabanova EA, Berezov TT: Inactivation of microbial glutamin-(aparagin-)ase by azaserine and 6-diazo-5-oxoL-norleucine. Biull Eksp Biol Med 100: 686–698, 1985Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Miguel Angel Medina
    • 1
  • Francisca Sánchez-Jiménez
    • 1
  • Javier Márquez
    • 1
  • Ana Rodríguez Quesada
    • 1
  • Ignacio de Castro Núñez
    • 1
  1. 1.Laboratorio de Bioquimica y Biología Molecular, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations