Experimental Brain Research

, Volume 81, Issue 1, pp 77–84 | Cite as

Correlation between retinal afferent distribution, neuronal size, and functional activity in the guinea pig medial terminal accessory optic nucleus

  • F. Lui
  • G. P. Biral
  • C. Benassi
  • R. Ferrari
  • R. Corazza


The intrinsic morpho-functional organization of the medial terminal nucleus of the accessory optic system was investigated in the guinea pig. The distribution of the retinal afferents, as assessed by the axoplasmic transport of 14C-valine, showed a remarkable asymmetry within the nucleus. Thus, while the retinal terminal field covered the entire medial terminal nucleus, by far the largest density of labeled retinofugal axon terminals was found within its dorsal division. In this same portion of the nucleus, we found the greatest density of large cells and the maximum intensity of functional activation, this latter as estimated by the increase in metabolic activity of neurons using the 14C-2-deoxyglucose autoradiographie method in the vertical and horizontal whole-field movement in the visual field.

Key words

Accessory optic system Medial terminal nucleus Autoradiography Functional metabolism Neuron classes Vertical optokinetic nystagmus Guinea pig 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azevedo TA, Cukiert A, Britto LRG (1983) A pretectal projection upon the accessory optic nucleus in the pigeon: an anatomical and electrophysiological study. Neurosci Lett 43:13–18Google Scholar
  2. Benassi C, Biral GP, Lui F, Porro CA, Corazza R (1989) The interstitial nucleus of the superior fasciculus, posterior bundle (INSFp) in the guinea pig: another nucleus of the accessory optic system processing the vertical retinal slip signal. Visual Neurosci 2:377–382Google Scholar
  3. Blanks RHI, Giolli RA, Pham SV (1982) Projections of the medial terminal nucleus of the accessory optic system upon pretectal nuclei in the pigmented rat. Exp Brain Res 48:228–237Google Scholar
  4. Biral GP, Porro CA, Cavazzuti M, Benassi C, Corazza R (1987) Vertical and horizontal visual whole-field motion differently affect the metabolic activity of the rat medial terminal nucleus. Brain Res 412:43–53Google Scholar
  5. Cajal SRy (1911) Histologie du systeme nerveux de l'homme et des vertebres. Maloine, ParisGoogle Scholar
  6. Clarke RJ, Giolli RA, Blanks RHI, Torigoe Y, Fallon JH (1989) Neurons of the medial terminal accessory optic nucleus of the rat are poorly collateralized. Visual Neurosci 2:269–274Google Scholar
  7. Clement G, Magnin M (1984) Effects of accessory optic system lesions on vestibulo-ocular and optokinetic reflexes in the cat. Exp Brain Res 55:49–59Google Scholar
  8. Cooper HM (1986) The accessory optic system in a prosimian primate (Microcebus murinus): evidence for a direct retinal projection to the medial terminal nucleus. J Comp Neurol 249:28–47Google Scholar
  9. Fite KV, Reiner A, Hunt SP (1979) Optokinetic nystagmus and accessory optic system of pigeon and turtle. Brain Behav Evol 16:192–202Google Scholar
  10. Gillilan L (1941) The connections of the basal optic root (posterior accessory tract) and its nucleus in various mammals. J Comp Neurol 74:367–408Google Scholar
  11. Giolli RA (1963) An experimental study of the accessory optic system in the cynomolgus monkey. J Comp Neurol 121:89–99Google Scholar
  12. Giolli RA, Braithwaite JR, Streeter TT (1968) Golgi study of the nucleus of the transpeduncular tract in the rabbit. J Comp Neurol 133:309–328Google Scholar
  13. Giolli RA, Peterson GM, Ribak CE, McDonald HM, Blanks RHI, Fallon JH (1985) GABAergic neurons comprise a major type in rodent visual relay nuclei: an immunocytochemical study of pretectal and accessory optic nuclei. Exp Brain Res 61:194–203Google Scholar
  14. Giolli RA, Torigoe Y, Blanks RHI (1988) Nonretinal projections to the medial terminal accessory optic nucleus in rabbit and rat: a retrograde and anterograde transport study. J Comp Neurol 269:73–86Google Scholar
  15. Giolli RA, Clarke RJ, Blanks RHI, Torigoe Y, Fallon JH (1989) Organization of rat medial terminal accessory optic nucleus: axon collateralization of neurons and its GABAergic neurons. Anat Rec 223:43AGoogle Scholar
  16. Grasse KL, Cynader MS (1982) Electrophysiology of medial terminal nucleus of accessory optic system in the cat. J Neurophysiol 48:490–504Google Scholar
  17. Gregory KM, Giolli RA (1985) The dendritic architecture of the medial terminal nucleus of the accessory optic system in rat, rabbit and cat. Exp Brain Res 60:501–508Google Scholar
  18. Hayhow WR (1959) An experimental study of the accessory optic fiber system in the cat. J Comp Neurol 113:281–302Google Scholar
  19. Hayhow WR, Webb C, Jervie A (1960) The accessory optic fiber system in the rat. J Comp Neurol 115:187–200Google Scholar
  20. Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209:139–175Google Scholar
  21. Iwahori N, Uchida K, Mizuno N (1981) A Golgi analysis of the accessory optic fibers terminating in the medial terminal nucleus of the mouse accessory optic system. Neurosci Lett 23:229–231Google Scholar
  22. Kadekaro M, Crane AM, Sokoloff L (1985) Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 82:6010–6013Google Scholar
  23. Kadekaro M, Vance WH, Terrell ML, Gary H, Eisenberg HM, Sokoloff L (1987) Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat. Proc Natl Acad Sci USA 84:5492–5495Google Scholar
  24. Kostovic I (1971) The terminal distribution of accessory optic fibers in the rat. Brain Res 31:202–206Google Scholar
  25. Laatsch RH (1969) The retinal projections in the accessory optic tract of the guinea pig. Anat Rec 163:214Google Scholar
  26. Lazar G (1983a) Transection of the basal optic root in the frog abolishes vertical optokinetic head-nystagmus. Neurosci Lett 43:7–11Google Scholar
  27. Lazar G (1983b) Retinal projections of the pigmented guinea pig. Acta Biol Hung 34:207–213Google Scholar
  28. Lefranc G, Barry J (1961) Etude des voies optiques accessoires chez la cobaye. C R Acad Sci 247:746–747Google Scholar
  29. Lenn NJ (1972) An electron microscopic study of accessory optic endings in the medial terminal nucleus. Brain Res 43:622–628Google Scholar
  30. Lui F, Benassi C, Biral GP, Cavazzuti M, Porro CA, Corazza R (1987) Functional metabolic mapping of guinea pig visual centres which process horizontal and vertical retinal slip signals. Neuroscience Abstr 22:732Google Scholar
  31. Marcotte RR, Updyke BV (1982) Cortical visual areas of the cat project differently onto the nuclei of the accessory optic system. Brain Res 242:205–217Google Scholar
  32. Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215Google Scholar
  33. McKenna O, Wallman J (1981) Identification of avian brain regions responsive to retinal slip using 2-deoxyglucose. Brain Res 210:455–460Google Scholar
  34. Natal CL, Britto LRG (1987) The pretectal nucleus of the optic tract modulates the direction selectivity of accessory optic neurons in rats. Brain Res 419:320–323Google Scholar
  35. Nudo RJ, Masterton RB (1986) Stimulation-induced 14 C-2-deoxyglucose labeling of synaptic activity in the central auditory system. J Comp Neurol 245:553–565Google Scholar
  36. Ottersen OP, Storm-Mathisen J (1984) GABA-containing neurons in the thalamus and pretectum of the rodent. Anat Embryol 170:197–207Google Scholar
  37. Porro C, Fonda S, Baraldi P, Biral GP, Cavazzuti M (1984) Computer assisted analyses of 14C-2DG autoradiographs employing a general purpose processing system. J Neurosci Methods 11:243–250Google Scholar
  38. Schwartz WJ, Smith CB, Davidsen T, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial sistem of the rat. Science 205:723–725Google Scholar
  39. Simpson JI, Soodak RE, Hess R (1979) The accessory optic system and its relation to the vestibulocerebellum. Progr Brain Res 50:715–724Google Scholar
  40. Simpson JI (1984) The accessory optic system. Ann Rev Neurosci 7:13–41Google Scholar
  41. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 14C-deoxyglucose method for measurement of local cerebral glucose utilisation: theory, procedure and normal values in conscious and anesthetized rat. J Neurochem 28:897–916PubMedGoogle Scholar
  42. Swanson LW, Cowan WM, Jones EG (1974) An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus of the albino rat and cat. J Comp Neurol 156:143–163Google Scholar
  43. Terubayashi H, Fujisawa H (1984) The accessory optic system in the rodents: a whole-mount HRP study. J Comp Neurol 227:285–295Google Scholar
  44. Walley RE (1967) Receptive fields in the accessory optic system of the rabbit. Exp Neurol 17:27–43Google Scholar
  45. Weber JT, Harting JK (1980) The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase study. Brain Res 194:1–28Google Scholar
  46. Yucel YH, Hindelang C, Stoeckel ME, Bonaventure N (1988) GAD immunoreactivity in pretectal and accessory optic nuclei of the frog mesencephalon. Neurosci Lett 84:1–6Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • F. Lui
    • 1
  • G. P. Biral
    • 1
  • C. Benassi
    • 1
  • R. Ferrari
    • 1
  • R. Corazza
    • 1
  1. 1.Istituto di Fisiologia UmanaUniversità di ModenaModenaItaly

Personalised recommendations