Molecular and Cellular Biochemistry

, Volume 104, Issue 1–2, pp 181–187 | Cite as

Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate

  • Willem H. Mager
  • Rudi J. Planta
Ribosome Biogenesis Synthesis of Ribosomal Proteins and Ribosome Formation

Abstract

The rate of ribosome formation in yeast is precisely adjusted to the physiological demands of the cell. During all growth conditions a balance is maintained in the production of all ribosomal constituents. Coordinate expression of the ribosomal protein (rp) genes is primarily accomplished at the transcriptional level. Transcription activation of the majority of the rp-genes is mediated through common upstream activating sequences, so-called RPG boxes, which occur usually in a tandem at a distance of 200–500 by from the start codon. These RPG-boxes represent binding sites for a transcriptional activator, called TUF or RAP. The concentration of TUF parallels the cellular growth rate and evidence exists that the response of rp-genes upon nutritional changes is mediated by this factor. Recent findings indicate that TUF/RAP also activates other gene families involved in cellular growth rate. Furthermore, this multifunctional protein also binds to the mating-type silencer and telomeres in yeast.

Some other rp-genes (e.g. those encoding S33 and L45) do not contain an RPG-box. They appear to be activated by another multifunctional protein, called ABF1 or SUF, by binding to another nucleotide motif. This multifunctional protein also activates other gene families, and in addition binds to the mating type silencer and ARS-elements.

Key words

yeast ribosomal protein genes growth rate multifunctional proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Planta RJ, Mager WH, Leer RJ, Woudt LP, Raué HA, El-Baradi TTAL: In: B Hardesty and G Kramer (eds) Structure, function and genetics of ribosomes. Springer Verlag, New York, 1986, pp 699–718Google Scholar
  2. 2.
    Mager WH: Biochim Biophys Acta 949: 1–15, 1988Google Scholar
  3. 3.
    Planta RJ, Mager WH: In: MF Tuite, M Picard and M Bolotin-Fukuhara (eds) Genetics of translation. NATO ASI series H, vol 14, Springer-Verlag, 1988, pp 177–129Google Scholar
  4. 4.
    Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ: Curr. Genet 9: 273–277, 1985Google Scholar
  5. 5.
    Rotenberg HO, Woolford JL: Mol Cell Biol 6: 674–687, 1986Google Scholar
  6. 6.
    Woudt LP, Mager WH, Nieuwint RTM, Wassenaar GM, van der Kuyl AC, Murre JJ, Hoekman MFM, Brockhoff PGM, Planta RJ: Nucl Acids Res 15: 6037–6048, 1987Google Scholar
  7. 7.
    Huet J, Cottrelle P, Cool M, Vignais M-L, Thiele D, Marck C, Buhler JM, Sentenac A, Fromageot P: The EMBO J 4: 3539–3547, 1985Google Scholar
  8. 8.
    Vignais M-L, Woudt LP, Wassenaar GM, Mager WH, Sentenac A, Planta RJ: The EMBO J 6: 1451–1457, 1987Google Scholar
  9. 9.
    Shore D: Cell 51: 721–732, 1987Google Scholar
  10. 10.
    Huet J, Sentenac A: Proc Natl Acad Sci 84: 3648–3652, 1987Google Scholar
  11. 11.
    Nieuwint RTM, Mager WH, Maurer CTC, Planta RJ: Curr Genet 15: 247–251, 1989Google Scholar
  12. 12.
    Herruer MH, Mager WH, Woudt LP, Nieuwint RTM, Wassenaar GM, Groeneveld P, Planta RJ: Nucl Acids Res 15: 10133–10144, 1987Google Scholar
  13. 13.
    Herruer MH Mager WH, Doorenbosch MM, Wessels PLM, Wassenaar GM, Planta RJ: Nucl Acids Res 17: 7427–7439, 1989Google Scholar
  14. 14.
    Hamil KG, Nam HG, Fried HM: Mol Cell Biol 8: 4328–4311, 1988Google Scholar
  15. 15.
    Rhode PR, Sweder KS, Oegema KF, Campbell JL: Genes and Developm 3: 1926–1939, 1989Google Scholar
  16. 16.
    Halfter H, Kavety B, Vandekerckhove J, Kiefer F, Gallwitz D: The EMBO J 8: 4265–4272, 1989Google Scholar
  17. 17.
    Diffley JFX, Stillman B: Science 246: 1034–1038, 1989Google Scholar
  18. 18.
    Dorsman JC, Doorenbosch MM, Maurer CTC, de Winde JH, Mager WH, Planta RJ, Grivell LA: Nucl Acids Res 17: 4917–4923, 1989Google Scholar
  19. 19.
    Della Seta F, Giafré S-A, Marck C, Santoro B, Presutti C, Sentenac A, Bozzoni I: Mol Cell Biol 10: 2437–2441, 1990Google Scholar
  20. 20.
    Chambers A, Tsang JSH, Stanway CA, Kingsman AJ, Kingsman SH: Mol Cell Biol 9: 5516–5524, 1989Google Scholar
  21. 21.
    Stanway CA, Chambers A, Kingsman AJ, Kingsman SH: Nucl Acids Res 17: 9205–9218, 1989Google Scholar
  22. 22.
    Brand AH, Micklen G, Nasmyth K: Cell 51: 709–719, 1987Google Scholar
  23. 23.
    Buchman AR, Kimmerly WJ, Rine J, Kornberg RD: Mol Cell Biol 8: 210–225, 1988Google Scholar
  24. 24.
    Buchman AR, Lue NF, Kornberg RD: Mol Cell Biol 8: 5086–5099, 1988Google Scholar
  25. 25.
    Shore D, Stillman DJ, Brand AH, Nasmyth K: The EMBO J 6: 461–467, 1987Google Scholar
  26. 26.
    Berman J, Tachinaba CY, Tye BK: Proc Natl Acad Sci USA 83: 3713–3717, 1986Google Scholar
  27. 27.
    Hofmann JF, Laroche T, Brand GH, Gasser SM: Cell 57: 725–737, 1989Google Scholar
  28. 28.
    Bram RJ, Kornberg RD: Mol Cell Biol 7: 403–409, 1987Google Scholar
  29. 29.
    Cai M, Davis RA: Mol Cell Biol 9: 2544–2550, 1989Google Scholar
  30. 30.
    Kulkens T, van Heerikhuizen H, Klootwijk J, Oliemans J, Planta RJ: Curr Genet 16: 351–359, 1989Google Scholar
  31. 31.
    Morrow BE, Johnson SP, Warner JF: J Biol Chem 264: 9061–9068, 1989Google Scholar
  32. 32.
    Chasman DI, Lue NF, Buchmann AR, LaPointe JW, Lorch Y, Kornberg RD: Genes and Developm 4: 503–514, 1990Google Scholar
  33. 33.
    Wang H, Nicholson PR, Stillman DJ: Mol Cell Biol 10: 1743–1753, 1990Google Scholar
  34. 34.
    Santangelo GM, Tornow J: Mol Cell Biol 10: 859–862, 1990Google Scholar
  35. 35.
    Buchman AR, Kornberg RD: Mol Cell Biol 10: 887–897, 1990Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Willem H. Mager
    • 1
  • Rudi J. Planta
    • 1
  1. 1.Biochemisch LaboratoriumVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations