Molecular and Cellular Biochemistry

, Volume 111, Issue 1–2, pp 41–47 | Cite as

Protective role of ascorbic acid against lipid peroxidation and myocardial injury

  • Sunil Chakrabarty
  • Anuradha Nandi
  • Chinmay K. Mukhopadhyay
  • Indu B. Chatterjee
Article

Abstract

Ascorbic acid (AH2) is a potential scavenger of superoxide radical and singlet oxygen. In the guinea pig, marginal AH2 deficiency results in intracellular oxidative damage in the cardiac tissue as evidenced by lipid peroxidation, formation of fluorescent pigment and loss of structural integrity of the microsomal membranes. The oxidative damage does not occur due to lack of enzymatic scavengers of reactive oxygen species such as superoxide dismutase, catalase and glutathione peroxidase. Also, glutathione transferase activity is not decreased in AH2 deficiency. Lipid peroxidation, fluorescent pigment formation and protein modification disappear after AH2 therapy. These results, if extra-polated to human beings, would indicate that chronic subclinical AH2 deficiency may result in progressive oxidative damage which in the long run may lead to permanent degenerative diseases in the heart.

Key words

myocardial injury lipid peroxidation ascorbic acid superoxide scavenger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clemetson CAB: Vitamin C, Vol. III CRC Press Inc., Boca Raton, Florida, 1989, pp 247–256Google Scholar
  2. 2.
    Som S, Raha C, Chatterjee IB: Ascorbic acid: a Scavenger of Superoxide radical. Acta Vitaminol Enzymol 5: 243–250, 1983Google Scholar
  3. 3.
    Nandi A, Chatterjee IB: Scavenging of Superoxide radical by ascorbic acid. J Biosci 11: 435–441, 1987Google Scholar
  4. 4.
    Nishikimi M: Oxidation of ascorbic acid with superoxide anion generated by the xanthine — xanthine oxidase system. Biochem Biophys Res Commun 63: 463–468, 1975Google Scholar
  5. 5.
    Allen JF, Hall DO: Superoxide reduction as a mechanism of ascorbate stimulated oxygen uptake by isolated chloroplasts. Biochem Biophys Res Commun 52: 856–862, 1973Google Scholar
  6. 6.
    Bodannes RS, Chen PC: Ascorbic acid quenches singlet oxygen rapidly. FEBS Lett 105: 195–196, 1979Google Scholar
  7. 7.
    Fridovich I: Superoxide dismutases. Adv Enzymol 41: 35–97, 1974Google Scholar
  8. 8.
    Martonosi A: Sarcoplasmic reticulum IV. Solubilization of microsomal adenosine triphosphate. J Biol Chem 243: 71–81, 1968Google Scholar
  9. 9.
    Buege JA, Aust SD: Microsomal lipid peroxidation. Methods Enzymol 105: 302–310, 1984Google Scholar
  10. 10.
    Itch F, Horie T, Awazu S: Fluorescence emitted from microsomal membranes by lipid peroxidation. Arch Biochem Biophys 264: 184–191, 1988Google Scholar
  11. 11.
    Ginter E: Ascorbic acid in cholesterol and bile acid metabolism. Ann NY Acad Sci 258: 410–421, 1975Google Scholar
  12. 12.
    Chatterjee IB, Banerjee A: Estimation of dehydro-ascorbic acid in blood of diabetic patients. Anal Biochem 98: 368–374, 1979Google Scholar
  13. 13.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951Google Scholar
  14. 14.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage Tr. Nature 227: 680–685, 1970PubMedGoogle Scholar
  15. 15.
    Akerboom TPM, Sies H: Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373–382, 1981Google Scholar
  16. 16.
    Nandi A, Chatterjee IB: Assay of superoxide dismutase activity in animal tissues. J Biosci 13: 305–315, 1988Google Scholar
  17. 17.
    Aebi H: Catalase in vitro. Methods Enzymol 105: 121–126, 1984Google Scholar
  18. 18.
    Fiché L, Günzler WA: Assay of glutathione peroxidase. Methods Enzymol 105: 114–121, 1984Google Scholar
  19. 19.
    Mannervik B, Guthenberg C: Glutathione transferase (human placenta). Methods Enzymol 77: 231–235, 1981Google Scholar
  20. 20.
    Koster JF, Slee RG: Lipid peroxidation of rat liver microsomes. Biochim Biophys Acta 620: 489–499, 1980Google Scholar
  21. 21.
    Tappel AL: Lipid peroxidation damage to cell components. Fed Proc 32: 1870–1874, 1973Google Scholar
  22. 22.
    Trotta RJ, Sullivan SG, Stern A: Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Biochem J 204: 405–415, 1982Google Scholar
  23. 23.
    Frei B, England L, Ames BN: Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86: 6377–6381, 1989Google Scholar
  24. 24.
    Shafar J: Rapid reversion of electrocardiographic abnormalities after treatment in two cases of scurvy. Lancet 2: 176, 1967Google Scholar
  25. 25.
    Sament S: Cardiac disorder in scurvy. N Engl J Med 282: 282, 1970Google Scholar
  26. 26.
    Willis GC: An experimental study of the intimal ground substance in atherosclerosis. Can Med Assoc J 69: 17, 1953Google Scholar
  27. 27.
    Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS: Role of free radical in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol 60: 1390–1397, 1982Google Scholar
  28. 28.
    Kibata M, Higuchi Y: Serum α-tocopherol, coenzyme Q and thiobarbituric acid—reactive substance in acute myocardial damage and stroke. Ann NY Acad Sci 393: 179–182, 1982Google Scholar
  29. 29.
    Kudrin AN, Kogan AJ, Koroljiv UV, Nyikolajev SzM, Beszkrovnova NN: The role of lipid peroxidation in the pathogenesis of myocardial infarction and favourable effect of antioxidants sodium selenite and vitamin E. Kardiologia 18: 115, 1978Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Sunil Chakrabarty
    • 1
  • Anuradha Nandi
    • 1
  • Chinmay K. Mukhopadhyay
    • 1
  • Indu B. Chatterjee
    • 1
  1. 1.Department of BiochemistryUniversity College of ScienceCalcuttaIndia

Personalised recommendations