Sexual Plant Reproduction

, Volume 8, Issue 4, pp 197–204 | Cite as

Ultrastructural characterization of apospory in Panicum maximum

  • T. N. Naumova
  • M. T. M. Willemse
Original Paper


The nucellar ultrastructure of apomictic Panicum maximum was analyzed during the meiocytic stage and during aposporous embryo sac formation. At pachytene the megameiocyte shows a random cell organelle distribution and sometimes only an incomplete micropylar callose wall. The chalazal nucellar cells are meristematic until the tetrad stage. They can turn into initial cells of aposporous embryo sacs. The aposporous initials can be recognized by their increased cell size, large nucleus, and the presence of many vesicles. The cell wall is thin with few plasmodesmata. If only a sexual embryo sac is formed, the nucellar cells retain their meristematic character. The aposporous initial cell is somewhat comparable to a vacuolated functional megaspore. It shows large vacuoles around the central nucleus and is surrounded by a thick cell wall without plasmodesmata. In the mature aposporous embryo sac the structure of the cells of the egg apparatus is similar to each other. In the chalazal part of the egg apparatus the cell walls are thin and do not hamper the transfer of sperm cells. Structural and functional aspects of nucellar cell differentiation and aposporous and sexual embryo sac development are discussed.

Key words

Apomixis Apospory Aposporous initial Aposporous embryo sac Ultrastructure Panicum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeln YS, Wilms HJ, van Wijk AJP (1985) Initiation of asexual seed production in Kentucky bluegrass, Poa pratensis L. In: Willemse MTM, Went JL van (eds) Proceedings of the 8th International Symposium on Sexual Plant Reproduction. Pudoc, Wageningen, pp 160–164Google Scholar
  2. Battaglia E (1963) Apomixis. In: Maheswari P (ed) Recent advances in the embryology of angiosperms. University of Delhi, India, pp 221–264Google Scholar
  3. Bell PR (1992) Apospory and apogamy: implications for understanding the plant live cycle. Int J Plant Sci 153:123–136Google Scholar
  4. Brown WH, Emery WHP (1958) Apomixis in Gramineae. Tribe Andropogoneae. Bot Gaz 118:246–253Google Scholar
  5. Carman JG, Grane CF, Riera-Lizarazu O (1991) Comparative histology of cell walls during meiotic and apomeiotic megasporogenesis in two hexaploid Australian Elymus species. Crop Sci 31:1527–1532Google Scholar
  6. Dickinson HG (1981) Cytoplasmic differentiation during microsporogenesis in higher plants. Acta Soc Bot Pol 50:3–12Google Scholar
  7. Dickinson HG, Heslop-Harrison J (1977) Ribosomes, membranes and organelles during meiosis in angiosperms. Philos Trans R Soc Lond B 277:327–342Google Scholar
  8. Koltunow A (1993) Apomixis: embryo sac and embryo formation without meiosis and fertilization in ovules. Plant Cell 5:1425–1437Google Scholar
  9. Leblanc O, Peel MD, Carman JG, Savidan Y (1995) Megasporogenesis and megagametogenesis in several Tripsacum species (Poaceae). Am J Bot 82:57–63Google Scholar
  10. Naumova TN (1991) Apogamety in Trillium canschatcense: utrastructural aspects. Apomixis News 3:16–17Google Scholar
  11. Naumova TN (1993) Apomixis in angiosperms: nucellar and integumentary embryony. CRC press, Boca Raton, FlaGoogle Scholar
  12. Naumova TN, Nijs APM den, Willemse MTM (1993) Quantitative analysis of aposporous parthenogenesis in Poa pratensis genotypes. Acta Bot Neerl 43:229–312Google Scholar
  13. Naumova TN, Willemse MTM (1982) Nucellar polyembryony in Sarcococca humilis: ultrastructural aspects. Phytomorphology 32:94–108Google Scholar
  14. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg NewYork, pp 475–518Google Scholar
  15. Russell SD (1979) Fine structure of megagametophyte development in Zea mays. Can J Bot 57:1093–1110Google Scholar
  16. Rutishauser A (1969) Embryologie und Fortpflanzungsbiologie der Angiospermen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Savidan JH (1982) Nature et hérédité de l'apomixis chez Panicum maximum Jacq. PhD thesis, Travaux et documents de O.R.S.T.O.M., ParisGoogle Scholar
  18. Savidan JH (1989) Another “working hypothesis” for the control of parthenogenesis in Panicum maximum: the egg cell wall completion. Apomixis News 1:47–51Google Scholar
  19. Schulz P, Jensen WA (1981) Pre-fertilization ovule development in Capsella: ultrastructure and ultracytochemical localization of acid phosphatase in the meiocyte. Protoplasma 107:27–45Google Scholar
  20. Schulz P, Jensen WA (1986) Pre-fertilization ovule development in Capsella: the dyad, tetrad, developing megaspore, and two-nucleate gametophyte. Can J Bot 64:875–884Google Scholar
  21. Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–11Google Scholar
  22. Willemse MTM, Went JL van (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 159–196Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • T. N. Naumova
    • 1
  • M. T. M. Willemse
    • 2
  1. 1.Komarov Botanical InstituteSt. PetersburgRussia
  2. 2.Department of Plant Cytology and MorphologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations