Journal of Biomolecular NMR

, Volume 5, Issue 1, pp 67–81 | Cite as

1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects

  • David S. Wishart
  • Colin G. Bigam
  • Arne Holm
  • Robert S. Hodges
  • Brian D. Sykes
Research Paper

Summary

In this study we report on the 1H, 13C and 15N NMR chemical shifts for the random coil state and nearest-neighbor sequence effects measured from the protected linear hexapeptide Gly-Gly-X-Y-Gly-Gly (where X and Y are any of the 20 common amino acids). We present data for a set of 40 peptides (of the possible 400) including Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly, measured under identical aqueous conditions. Because all spectra were collected under identical experimental conditions, the data from the Gly-Gly-X-Ala-Gly-Gly series provide a complete and internally consistent set of 1H, 13C and 15N random coil chemical shifts for all 20 common amino acids. In addition, studies were also conducted into nearest-neighbor effects on the random coil shift arising from a variety of X and Y positional substitutions. Comparisons between the chemical shift measurements obtained from Gly-Gly-X-Ala-Gly-Gly and Gly-Gly-X-Pro-Gly-Gly reveal significant systematic shift differences arising from the presence of proline in the peptide sequence. Similarly, measurements of the chemical shift changes occurring for both alanine and proline (i.e., the residues in the Y position) are found to depend strougly on the type of amino acid substituted into the X position. These data lend support to the hypothesis that sequence effects play a significant role in determining peptide and protein chemical shifts.

Keywords

1H, 13C, 15N NMR chemical shifts Random coil Amino acid Peptide 

Abbreviations

DIEA

diisopropylethylamine

DMF

dimethylformamide

DMSO

dimethyl sulfoxide

DSS

2,2-dimethyl-2-silapentane-5-sulfonic acid

HMQC

heteronuclear multiple-quantum coherence

HOBt

N-hydroxybenzotriazole

MBHA

4-methylbenzyhydrylamine

NOE

nuclear Overhauser effect

TBTU

2-(benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate

TFE

trifluoroethanol

TMS

tetramethylsilane

TOCSY

total correlation spectroscopy

TSP

3-(trimethylsilyl)propionate, sodium salt

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BaxA. and SubramanianJ. (1986) J. Magn. Reson., 67, 565–570.Google Scholar
  2. BraunschweilerL. and ErnstR.R. (1983) J. Magn. Reson., 53, 521–528.Google Scholar
  3. BundiA. and WüthrichK. (1979a) Biopolymers, 18, 285–297.Google Scholar
  4. BundiA. and WüthrichK. (1979b) Biopolymers, 18, 299–311.Google Scholar
  5. DeDiosA.C., PearsonJ.G. and OldfieldE. (1993a) Science, 260, 1491–1495.ADSGoogle Scholar
  6. DeDiosA.C., PearsonJ.R. and OldfieldE. (1993b) J. Am. Chem. Soc., 115, 9768–9773.Google Scholar
  7. DelgarnoD.C., LevineB.A. and WilliamsR.J.P. (1983) Biosci. Rep., 3, 443–452.Google Scholar
  8. DeMarcoA. (1977) J. Magn. Reson., 26, 527–528.Google Scholar
  9. DysonH.J., RanceM., HoughtenR.A., LernerR.A. and WrightP.E. (1988) J. Mol. Biol., 201, 161–200.Google Scholar
  10. DysonH.J. and WrightP.E. (1991) Annu. Rev. Biophys. Biophys. Chem., 20, 519–538.CrossRefGoogle Scholar
  11. EvansP.A., ToppingK.D., WoolfsonD.N. and DobsonC.M. (1991) Protein Struct. Funct. Genet., 9, 248–266.Google Scholar
  12. GippertG.P., YipP.F., WrightP.E. and CaseD.A. (1990) Biochem. Pharmacol., 40, 15–22.CrossRefGoogle Scholar
  13. GlushkaJ., LeeM., CoffinS. and CowburnD. (1989) J. Am. Chem. Soc., 111, 7716–7722.CrossRefGoogle Scholar
  14. GlushkaJ., LeeM., CoffinS. and CowburnD. (1990) J. Am. Chem. Soc., 112, 2843.CrossRefGoogle Scholar
  15. GrathwohlC. and WüthrichK. (1974) J. Magn. Reson., 13, 217–225.Google Scholar
  16. GrassK.-H. and KalbitzerH.R. (1988) J. Magn. Reson., 76, 87–99.Google Scholar
  17. HerranzJ., GonzalezC., RicoM., NietoJ.L. SantoroJ., JimenezM.A., BruixM., NeiraJ.L. and BlancoF.J. (1992) Magn. Reson. Chem., 30, 1012–1018.CrossRefGoogle Scholar
  18. HowarthO.W. (1978) Prog. NMR Spectrosc., 12, 1–40.Google Scholar
  19. JimenezM.A., BlancoF.J., RicoM., HerranzJ., SantoroJ. and NietoJ.L. (1992) Eur. J. Biochem., 207, 39–49.CrossRefGoogle Scholar
  20. KeimP., VignaR.A., MarshallR.C. and GurdF.R.N. (1973a) J. Biol. Chem., 248, 6104–6113.Google Scholar
  21. KeimP., VignaR.A., MorrowJ.S., MarshallR.C. and GurdF.R.N. (1973b) J. Biol. Chem., 248, 7811–7818.Google Scholar
  22. KeimP., VignaR.A., MorrowA.M., MarshallR.C. and GurdF.R.N. (1974) J. Biol. Chem., 249, 4149–4156.Google Scholar
  23. KricheldorfH.R. (1981) Org. Magn. Reson., 15, 162–177.CrossRefGoogle Scholar
  24. LiveD.H., DavisD.G., AgostaW.C. and CowburnD. (1984) J. Am. Chem. Soc., 106, 1939–1943.Google Scholar
  25. MassonA. and WüthrichK. (1973) FEBS lett., 31, 114–118.CrossRefGoogle Scholar
  26. MerutkaG., DysonH.J. and WrightP.E. (1995) J. Biomol. NMR, 5, 14–24.Google Scholar
  27. NeriD., WiderG. and WüthrichK. (1992) Proc. Natl. Acad. Sci. USA, 89, 4397–4401.ADSGoogle Scholar
  28. ÖsapayK. and CaseD.A. (1994) J. Am. Chem. Soc., 113, 9436–9444.Google Scholar
  29. ÖsapayK. and CaseD.A. (1994) J. Biomol. NMR, 4, 215–230.CrossRefGoogle Scholar
  30. PastoreA. and SaudekV. (1990) J. Magn. Reson., 90, 165–176.Google Scholar
  31. ReilyM.D., ThanabalV. and OmecinskyD.O. (1992) J. Am. Chem. Soc., 114, 6251–6252.CrossRefGoogle Scholar
  32. RicharzR. and WüthrichK. (1978) Biopolymers, 17, 2133–2141.CrossRefGoogle Scholar
  33. SaitoH. (1986) Magn. Reson. Chem., 24, 835–852.Google Scholar
  34. SperaS. and BaxA. (1991) J. Am. Chem. Soc., 113, 5490–5492.CrossRefGoogle Scholar
  35. SrinivasanP.R. and LichterR.L. (1977) J. Magn. Reson., 28, 227–234.Google Scholar
  36. StatesD.J., HaberkornR.A. and RubenD.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  37. SzilagyiL. and JardetzkyO. (1989) J. Magn. Reson. 83, 441–449.Google Scholar
  38. ThanabalV., OmecinskyD.O., ReilyM.D. and CodyW.L. (1994) J. Biomol. NMR, 4, 47–59.CrossRefGoogle Scholar
  39. TorchiaD.A., LyerlaJ.R. and QuattroneA.J. (1975) Biochemistry, 14, 887–892.CrossRefGoogle Scholar
  40. WilliamsonM.P. (1990) Biopolymers, 29, 1423–1431.CrossRefGoogle Scholar
  41. WilliamsonM.P., AsakuraT., NakamuraE. and DemuraM. (1992) J. Biomol. NMR, 2, 83–98.CrossRefGoogle Scholar
  42. WilmotC.M. and ThorntonJ.M. (1988) J. Mol. Biol., 203, 221–232.CrossRefGoogle Scholar
  43. Wishart, D.S. (1991) Ph.D. Thesis, Yale University, New Haven, CT.Google Scholar
  44. WishartD.S., SykesB.D. and RichardsF.M. (1991a) FEBS Lett., 193, 72–80.Google Scholar
  45. WishartD.S., SykesB.D. and RichardsF.M. (1991b) J. Mol. Biol., 222, 311–333.CrossRefGoogle Scholar
  46. WishartD.S., SykesB.D. and RichardsF.M. (1992) Biochemistry, 31, 1647–1651.CrossRefGoogle Scholar
  47. WishartD.S. and SykesB.D. (1994a) J. Biomol. NMR, 4, 171–180.CrossRefGoogle Scholar
  48. WishartD.S. and SykesB.D. (1994b) Methods Enzymol., 239, 363–392.Google Scholar
  49. Wishart, D.S., Bigam, C.G., Yao, J., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, submitted for publication.Google Scholar
  50. WitanowskiM., StefaniukL. and WebbG.A. (1993) Annu. Rep. NMR Spectrosc., 25, 1–480.Google Scholar
  51. WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.Google Scholar
  52. ZhouN.E., ZhuB.-Y., SykesB.D. and HodgesR.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • David S. Wishart
    • 1
  • Colin G. Bigam
    • 1
  • Arne Holm
    • 1
  • Robert S. Hodges
    • 1
  • Brian D. Sykes
    • 1
  1. 1.Protein Engineering Network of Centres of Excellence, Department of BiochemistryUniversity of AlbertaEdmontonCanada
  2. 2.Chemistry DepartmentRoyal Veterinary and Agriculture UniversityFrederiksbergDenmark

Personalised recommendations