Journal of Biomolecular NMR

, Volume 5, Issue 1, pp 14–24 | Cite as

‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG

  • Gene Merutka
  • H. Jane Dyson
  • Peter E. Wright
Research Paper


Proton chemical shifts of a series of disordered linear peptides (H-Gly-Gly-X-Gly-Gly-OH, with X being one of the 20 naturally occurring amino acids) have been obtained using 1D and 2D 1H NMR at pH 5.0 as a function of temperature and solvent composition. The use of 2D methods has allowed some ambiguities in side-chain assignments in previous studies to be resolved. An additional benefit of the temperature data is that they can be used to obtain ‘random coil’ amide proton chemical shifts at any temperature between 278 and 318 K by interpolation. Changes of chemical shift as a function of trifluoroethanol concentration have also been determined at a variety of temperatures for a subset of peptides. Significant changes are found in backbone and side-chain amide proton chemical shifts in these ‘random coil’ peptides with increasing amounts of trifluoroethanol, suggesting that caution is required when interpreting chemical shift changes as a measure of helix formation in peptides in the presence of this solvent. Comparison of the proton chemical shifts obtained here for H-Gly-Gly-X-Gly-Gly-OH with those for H-Gly-Gly-X-Ala-OH [Bundi, A. and Wüthrich, K. (1979) Biopolymers, 18, 285–297] and for Ac-Gly-Gly-X-Ala-Gly-Gly-NH2 [Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995) J. Biomol. NMR, 5, 67–81] generally shows good agreement for CH protons, but reveals significant variability for NH protons. Amide proton chemical shifts appear to be highly sensitive to local sequence variations and probably also to solution conditions. Caution must therefore be exercised in any structural interpretation based on amide proton chemical shifts.


‘Random coil’ chemical shifts Temperature coefficient Trifluoroethanol Peptide proton chemical shifts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AlexandrescuA.T., EvansP.A., PitkeathlyM., BaumJ. and DobsonC.M. (1993) Biochemistry 32, 1707–1718.CrossRefGoogle Scholar
  2. BlancoF.J., HerranzJ., GonzálezC., JimenezM.A., RicoM., SantoroJ. and NietoJ.L. (1992) J. Am. Chem. Soc. 114, 9676–9677.CrossRefGoogle Scholar
  3. BraunD., WiderG. and WüthrichK. (1994) J. Am. Chem. Soc., 116, 8466–8469.Google Scholar
  4. BreezeA.L., HarveyT.S., BazzoR. and CampbellI.D. (1991) Biochemistry, 30, 575–582.CrossRefGoogle Scholar
  5. BrooksIIIC.L. and NilssonL. (1993) J. Am. Chem. Soc., 115, 11034–11035.CrossRefGoogle Scholar
  6. BuckM., RadfordS.E. and DobsonC.M. (1993) Biochemistry 32, 669–678.CrossRefGoogle Scholar
  7. BundiA. and WüthrichK. (1979a) Biopolymers, 18, 285–297.Google Scholar
  8. BundiA. and WüthrichK. (1979b) Biopolymers, 18, 299–311.Google Scholar
  9. CloreG.M., GronenbornA.M., BrüngerA. and KarplusM. (1985) J. Mol. Biol., 186, 435–455.CrossRefGoogle Scholar
  10. CrossB.P. and SchleichT. (1977) Org. Magn. Reson., 10, 82–85.CrossRefGoogle Scholar
  11. DalgarnoD.C., LevineB.A. and WilliamsR.J.P. (1983) Biosci. Rep., 3, 443–452.CrossRefGoogle Scholar
  12. DeMarcoA. (1977) J. Magn. Reson. 26, 527–528.Google Scholar
  13. DysonH.J., RanceM., HoughtenR.A., LernerR.A. and WrightP.E. (1988a) J. Mol. Biol., 201, 161–200.Google Scholar
  14. DysonH.J., RanceM., HoughtenR.A., WrightP.E. and LernerR.A. (1988b) J. Mol. Biol., 201, 201–217.Google Scholar
  15. DysonH.J. and WrightP.E. (1991) Annu. Rev. Biophys. Biophys. Chem., 20, 519–538.CrossRefGoogle Scholar
  16. DysonH.J., MerutkaG., WalthoJ.P., LernerR.A. and WrightP.E. (1992a) J. Mol. Biol., 226, 795–817.Google Scholar
  17. DysonH.J., SayreJ.R., MerutkaG., ShinH.-C., LernerR.A. and WrightP.E. (1992b) J. Mol. Biol., 226, 819–835.Google Scholar
  18. FanP., BrackenC. and BaumJ. (1993) Biochemistry, 32, 1573–1582.Google Scholar
  19. HoffmanR.E. and DaviesD.B. (1988) Magn. Reson. Chem., 26, 523–525.Google Scholar
  20. JimenezM.A., NietoJ.L., RicoM., SantoroJ., HerranzJ. and BermejoF.J. (1986) J. Mol. Struct. 143, 435–438.CrossRefGoogle Scholar
  21. KeimP., VignaR.A., MarshallR.C. and GurdF.R.N. (1973a) J. Biol. Chem., 248, 6104–6113.Google Scholar
  22. KeimP., VignaR.A., MorrowJ.S., MarshallR.C. and GurdF.R.N. (1973b) J. Biol. Chem. 248, 7811–7818.Google Scholar
  23. KeimP., VignaR.A., NigenA.M., MorrowJ.S. and GurdF.R.N. (1974) J. Biol. Chem., 249, 4149–4156.Google Scholar
  24. KemminkJ., VanMierloC.P.M., ScheekR.M. and CreightonT.E., (1993) J. Mol. Biol., 230, 312–322.CrossRefGoogle Scholar
  25. KesslerH. (1982) Angew. Chem., Int. Ed. Engl., 21, 512–523.Google Scholar
  26. KoppleK.D., OhnishiM. and GoA. (1969) J. Am. Chem. Soc. 91, 4264–4272.Google Scholar
  27. LlinasM. and KleinM.P. (1975) J. Am. Chem. Soc., 97, 4731–4737.CrossRefGoogle Scholar
  28. MammiS., MammiN.J. and PeggionE. (1988) Biochemistry, 27, 1374–1379.CrossRefGoogle Scholar
  29. MarionD., IkuraM., TschudinR. and BaxA. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  30. MerutkaG., MorikisD., BrüschweilerR. and WrightP.E. (1993) Biochemistry, 32, 13089–13097.CrossRefGoogle Scholar
  31. NelsonJ.W. and KallenbachN.R. (1989) Biochemistry, 28, 5256–5261.Google Scholar
  32. NozakiY. and TanfordC. (1971) J. Biol. Chem., 246, 2211–2217.Google Scholar
  33. OhnishiM. and UrryD.W. (1969) Biochem. Biophys. Res. Commun., 36, 194–202.Google Scholar
  34. ÖsapayK. and CaseD.A. (1991) J. Am. Chem. Soc., 113, 9436–9444.Google Scholar
  35. PardiA., WagnerG. and WüthrichK. (1983) Eur. J. Biochem., 137, 445–454.CrossRefGoogle Scholar
  36. PitnerT.P. and UrryD.W. (1972) J. Am. Chem. Soc., 94, 1399–1400.CrossRefGoogle Scholar
  37. RicharzR. and WüthrichK. (1978) Biopolymers, 17, 2133–2141.CrossRefGoogle Scholar
  38. RizoJ., BlancoF.J., KobeB., BruchM.D. and GieraschL.M. (1993) Biochemistry, 32, 4881–4894.CrossRefGoogle Scholar
  39. SchnölzerM., AlewoodP., JonesA., AlewoodD. and KentS.B.H. (1992) Int. J. Pept. Protein Res., 40, 180–193.Google Scholar
  40. ShinH.-C., MerutkaG., WalthoJ.P., WrightP.E., and DysonH.J. (1993) Biochemistry, 32, 6348–6355.Google Scholar
  41. SönnichsenF.D., VanEykJ.E., HodgesR.S. and SykesB.D. (1992) Biochemistry, 31, 8790–8798.Google Scholar
  42. SzilágyiL. and JardetzkyO. (1989) J. Magn. Reson. 83, 441–449.Google Scholar
  43. ThanabalV., OmecinskyD.O., ReilyM.D. and CodyW.L. (1994) J. Biomol. NMR, 4, 47–59.CrossRefGoogle Scholar
  44. TimasheffS.N. (1970) Acc. Chem. Res., 3, 62–68.CrossRefGoogle Scholar
  45. UrryD.W., MitchellL.W. and OhnishiT. (1974) Proc. Natl. Acad. Sci. USA, 71, 3265–3269.ADSGoogle Scholar
  46. UrryD.W. and LongM.M. (1976) CRC Crit. Rev. Biochem., 4, 1–45.Google Scholar
  47. VanGeetA.L. (1970) Anal. Chem., 42, 679–680.Google Scholar
  48. WalthoJ.P., FeherV.A., MerutkaG., DysonH.J. and WrightP.E. (1993) Biochemistry, 32, 6337–6347.CrossRefGoogle Scholar
  49. WilliamsonM.P. (1990) Biopolymers, 29, 1423–1431.CrossRefGoogle Scholar
  50. WishartD.S., SykesB.D. and RichardsF.M. (1991) J. Mol. Biol., 222, 311–333.CrossRefGoogle Scholar
  51. WishartD.S., BigamC.G., HolmA., HodgesR.S. and SykesB.D. (1995) J. Biomol. NMR, 5, 67–81.Google Scholar
  52. WüthrichK. and DeMarcoA. (1976) Helv. Chim. Acta, 59, 2228–2235.CrossRefGoogle Scholar
  53. YamamotoY., OhkuboT., KoharaA., TanakaT. and KikuchiM. (1990) Biochemistry, 29, 8998–9006.Google Scholar
  54. ZhouN.E., ZhuB.-Y., SykesB.D. and HodgesR.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • Gene Merutka
    • 1
  • H. Jane Dyson
    • 1
  • Peter E. Wright
    • 1
  1. 1.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations