Journal of Comparative Physiology A

, Volume 178, Issue 5, pp 699–709 | Cite as

Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts

  • M. Giurfa
  • M. Vorobyev
  • P. Kevan
  • R. Menzel
Original Paper


Honeybees Apis mellifera were trained to distinguish between the presence and the absence of a rewarded coloured spot, presented on a vertical, achromatic plane in a Y-maze. They were subsequently tested with different subtended visual angles of that spot, generated by different disk diameters and different distances from the decision point in the device. Bees were trained easily to detect bee-chromatic colours, but not an achromatic one. Chromatic contrast was not the only parameter allowing learning and, therefore, detection: αmin, the subtended visual angle at which the bees detect a given stimulus with a probability P0 = 0.6, was 5° for stimuli presenting both chromatic contrast and contrast for the green photoreceptors [i.e. excitation difference in the green photoreceptors, between target and background (green contrast)], and 15° for stimuli presenting chromatic but no green contrast. Our results suggest that green contrast can be utilized for target detection if target recognition has been established by means of the colour vision system. The green-contrast signal would be used as a far-distance signal for flower detection. This signal would always be detected before chromatic contrast during an approach flight and would be learned in compound with chromatic contrast, in a facilitation-like process.

Key words

Honeybees Apis mellifera Colour vision Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31: 1381–1397Google Scholar
  2. Backhaus W (1992) Color vision in honey bees. Neurosci Biobehav Rev 16: 1–12Google Scholar
  3. Backhaus W (1993) Color vision and color choice behavior of the honeybee. Apidologie 24: 309–331Google Scholar
  4. Backhaus W, Menzel R (1987) Color distance derived from a receptor model of color vision in the honeybee. Biol Cybern 55: 321–331Google Scholar
  5. Backhaus W, Menzel R, Kreißl S (1987) Multidimensional scaling of color similarity in bees. Biol Cybern 56: 293–304Google Scholar
  6. Braitenberg V (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7: 235–242Google Scholar
  7. Brandt R, Backhaus W, Dittrich M, Menzel R (1993) Simulation of threshold spectral sensitivity according to the color theory for the honeybee. In: Heisenberg M, Elsner N (eds) Gene-brainbehaviour. Proc 21st Göttingen Neurobiology Conference. Thieme, Stuttgart, p 374Google Scholar
  8. Butler CG (1951) The importance of perfume in the discovery of food by the worker honey-bee (Apis mellifera L.). Proc R Soc Lond B 138: 403–413Google Scholar
  9. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators' colour vision. J Comp Physiol A 171: 171–181Google Scholar
  10. Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170: 545–563Google Scholar
  11. Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34: 1489–1508Google Scholar
  12. Daumer K (1956) Reizmetrische Untersuchung des Farbensehens der Bienen. Z Vergl Physiol 38: 413–478Google Scholar
  13. Domjan M, Burkhard B (1986) The principles of learning and behavior. Brooks/Cole, CaliforniaGoogle Scholar
  14. Faegri K, van der Piji L (1978) The principles of pollination ecology. 3rd ed. Pergamon, OxfordGoogle Scholar
  15. Frisch K (1919) Über den Geruchsinn der Bienen und seine blütenbiologische Bedeutung. Zool Jb Physiol 37: 2–238Google Scholar
  16. Frisch Kv (1965) Tanzsprache und Orientierung der Bienen. Springer, BerlinGoogle Scholar
  17. Götz KG (1964) Optomotorische Untersuchung des visuellen Sytems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2: 77–92Google Scholar
  18. Heiversen Dv (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80: 439–472Google Scholar
  19. Hollan PC (1983) “Occasion setting” in Pavlovian feature positive discriminations. In: Commons ML, Herrnstein RJ, Wagner AR (eds) Quantitative analyses of behavior: discrimination processes. Ballinger, Cambridge, vol 4, pp 183–206Google Scholar
  20. Kaiser W, Liske E (1974) Die optomotorische Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J Comp Physiol 89: 391–408Google Scholar
  21. Kevan PG (1989) How honey bees forage for pollen at skunk cabbage, Symplocarpus foetidus (Araceae). Apidologie 20: 485–490Google Scholar
  22. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28: 407–453Google Scholar
  23. Kevan PG, Eisikowitch D, Ambrose JD, Kemp JR (1990) Cryptic dioecy and insect pollination in Rosa setiyera Michx. (Rosaceae), a rare plant of Carolinian Canada. Biol J Linn Soc 40: 229–243Google Scholar
  24. Kirschfeld K (1973) Optomotorische Reaktionen der Biene auf bewegte“Polarisations-Muster”. Z Naturforsch 28c: 329–338Google Scholar
  25. Kugler H (1933) Blütenökologische Untersuchungen mit Hummeln VI. Planta, Arch wiss Bot 19: 781–789Google Scholar
  26. Laughlin SB, Horridge GA (1971) Angular sensitivity of the retinula cells of dark-adapted worker bee. Z Vergl Physiol 74: 329–335Google Scholar
  27. Lehrer M (1987) To be or not to be a colour-seeing bee. Israel J Entomol 21: 51–76Google Scholar
  28. Lehrer M (1993) Parallel processing of motion, shape and colour in the visual system of the bee. In: Wiese K, Gribakin FG, Popov AV, Reinninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 266–272Google Scholar
  29. Lehrer M (1994) Spatial vision in the honeybee: the use of different cues in different tasks. Vision Res 34: 2363–2385Google Scholar
  30. Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82: 145–147Google Scholar
  31. Lehrer M, Srinivasan MV (1993) Object detection by honeybees: Why do they land on edges? J Comp Physiol A 173: 23–32Google Scholar
  32. Lehrer M, Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bees' visual world with a third dimension. Nature 332: 356–357Google Scholar
  33. Lehrer M, Srinivasan MV, Zhang SW (1990) Visual edge detection in the honeybee and its chromatic properties. Proc R Soc Lond B 238: 321–330Google Scholar
  34. Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56: 22–62Google Scholar
  35. Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges langzeitiges Behalten. Z Vergl Physiol 60: 82–102Google Scholar
  36. Menzel R (1985) Learning in honeybees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology. Fischer, Stuttgart, pp 55–74Google Scholar
  37. Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. The perception of colour. MacMillan, London, pp 262–288Google Scholar
  38. Menzel R, Greggers U (1985) Natural phototaxis and its relationship to colour vision in honeybees. J Comp Physiol A 157: 311–321Google Scholar
  39. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68: 81–120Google Scholar
  40. Menzel R, Greggers U, Hammer M (1993) Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In: Papaj D, Lewis AC (eds) Insect learning. Ecological and evolutionary perspectives. Chapman & Hall, New York, pp 79–125Google Scholar
  41. Rescorla RA, Durlach PJ, Grau JW (1985) Context learning in Pavlovian conditioning. In: Balsam PD, Tomie A (eds) Context and learning. Erlsbaum, Hillsdale, pp 23–56Google Scholar
  42. Rossel S (1993) Navigation by bees using polarized skylight. Comp Biochem Physiol 104A: 695–708Google Scholar
  43. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323: 128–131Google Scholar
  44. Seidl R (1980) Die Sehfelder und Ommatidien-Divergenzwinkel der drei Kasten der Honigbiene (Apis mellifica). Verh Dtsch Zool Ges 1980: 367Google Scholar
  45. Snyder A W (1979) Physics of vision in compound eyes. In: Autrum HJ (ed) Vision in invertebrates (Handbook of Sensory Physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp225–313Google Scholar
  46. Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162: 159–172Google Scholar
  47. Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum HJ (ed) Vision in invertebrates (Handbook of Sensory Physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp357–439Google Scholar
  48. Tunstall J, Horridge GA (1967) Electrophysiological investigation of the optics of the locust retina. Z Vergl Physiol 55: 167–182Google Scholar
  49. Vallet AM, Coles JA (1993) The perception of small objects by the drone honeybee. J Comp Physiol A 172: 183–188Google Scholar
  50. Wehner R (1972) Dorsoventral asymmetry in the visual field of the bee Apis mellifica. J Comp Physiol 77: 256–277Google Scholar
  51. Wehner R (1973) The generalization of directional visual stimuli in the honey bee, Apis mellifera. J Insect Physiol 17: 1579–1591Google Scholar
  52. Weizsäcker EV (1970) Dressurversuche zum Formensehen der Bienen, insbesonders unter wechselnden Helligkeitsbedingungen. Z Vergl Physiol 69: 296–310Google Scholar
  53. Zar JH (1985) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. Giurfa
    • 1
    • 2
  • M. Vorobyev
    • 1
    • 3
  • P. Kevan
    • 1
    • 4
  • R. Menzel
    • 1
  1. 1.Institut für Neurobiologie, Freie Universität BerlinBerlinGermany
  2. 2.Department of Biological SciencesFCEyN, University of Buenos AiresBuenos AiresArgentina
  3. 3.Institute of Evolutionary Physiology and Biochemistry, Academy of SciencesSt. PetersburgRussia
  4. 4.Department of Environmental BiologyUniversity of GuelphGuelphCanada

Personalised recommendations