Theoretical and Applied Genetics

, Volume 89, Issue 1, pp 26–32 | Cite as

Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA

  • Y. Sun
  • D. Z. Skinner
  • G. H. Liang
  • S. H. Hulbert
Article

Abstract

The phylogenetic relationships of the genus Sorghum and related genera were studied by sequencing the nuclear ribosomal DNA (rDNA) internal transcribed spacer region (ITS). DNA was extracted from 15 Sorghum accessions, including one accession from each of the sections Chaetosorghum and Heterosorghum, four accessions from Parasorghum, two accessions from Stiposorghum, and seven representatives from three species of the section Sorghum (one accession from each of S. propinquum and S. halepense, and five races of S. bicolor). The maize (Zea mays) line, H95, and an accession from Cleistachne sorghoides were also included in the study. Variable nucleotides were used to construct a strict consensus phylogenetic tree. The analyses indicate that S. propinquum, S. halepense and S. bicolor subsp. arundinaceum race aethiopicum may be the closest wild relatives of cultivated sorghum; Sorghum nitidum may be the closest 2n=10 relative to S. bicolor, the sections Chaetosorghum and Heterosorghum appear closely related to each other and more closely related to the section Sorghum than Parasorghum; and the section Parasorghum is not monophyletic. The results also indicate that the genus Sorghum is a very ancient and diverse group.

Key words

Sorghum Zea mays Phylogeny rDNA sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appels R, Dvorak J (1982) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor Appl Genet 63:337–348Google Scholar
  2. Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylog Evol 1:3–16Google Scholar
  3. Bhatti AG, Endrizzi JE, Reeves RG (1960) Origin of Johnson grass. J Hered 51:106–110Google Scholar
  4. Celarier RP (1957) Cytotaxonomic notes on the subsection halepensia of the genus Sorghum. Bull Torrey Bot Club 85:49–62Google Scholar
  5. Celarier RP (1958) Cytotaxonomy of the Andropogoneae. III. Subtribe Sorgeae, Genus Sorghum. Cytologia 23:395–418Google Scholar
  6. Chittenden LM, Shertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor S. propinquum suitable for high-density mapping suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933Google Scholar
  7. De Wet JMJ (1978) Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot 65:477–484Google Scholar
  8. De Wet JMJ, Harlan JR (1971) The origin and domestication of Sorghum bicolor Econ Bot 25:128–135Google Scholar
  9. De Wet JMJ, Huckabay JP (1967) The origin of Sorghum bicolor II. Distribution and domestication. Evolution 21:787–802Google Scholar
  10. Doggett H (1976) Sorghum Sorghum bicolor (Gramineae-Andropogoneae). In: Simmonds NW (ed) Evolution of crop plants. Longman Group Limited, LondonGoogle Scholar
  11. Duvall MR, Doebley JF (1990) Restriction-site variation in the chloroplast genome of Sorghum (Poaceae). Systematic Bot 15:472–480Google Scholar
  12. Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361Google Scholar
  13. Gu MH, Ma HT, Liang GH (1984) Karyotype analysis of seven species in the genus Sorghum. J Hered 75:196–202Google Scholar
  14. Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Routledge, Chapman and hall, Inc., New York London, pp 50–91Google Scholar
  15. Helentjaris T, Weber D, Wright S (1988) Identification of genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphism. Genetics 118:353–363Google Scholar
  16. Hulbert SH, Bennetzen JL (1991) Recombination at the RP1 locus of maize. Mol Gen Genet 226:377–382Google Scholar
  17. Hulbert SH, Richter TD, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops using maize RFLP probes. Proc Natl Acad Sci USA 87:4251–4255Google Scholar
  18. Liang GH, Casady AJ (1966) Quantitative presentation of the systematic relationships among twenty-one Sorghum species. Crop Sci 6:76–79Google Scholar
  19. Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghum in Africa. Texas Agri Exp St Bull No. 1454Google Scholar
  20. Melake Berhan A, Hulbert SH, Butler LG, Bennetzen JF (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604Google Scholar
  21. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018Google Scholar
  22. Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  23. Snowden JD (1935) A classification of the cultivated sorghum. Bull Misc Info, No.5. Royal Botanic Garden, Kew, EnglandGoogle Scholar
  24. Springer PS, Zimmer EA, Bennetzen JL (1989) Genomic organization of the ribosomal DNA of sorghum and its close relatives. Theor Appl Genet 77:844–850Google Scholar
  25. Swofford DL (1993) PAUP: Phylogenetic analysis using parsimony. Computer program distributed by Illinois National History Survey. Champaign, IllinoisGoogle Scholar
  26. Takaiwa F, Oono K, Sugiura M (1985) Nucleotide sequence of the 17–25 region from rice rDNA. Plant Mol Biol 4:355–364Google Scholar
  27. Tang H, Liang GH (1988) The genomic relationship between cultivated sorghum and Johnsongrass: a re-evaluation. Theor Appl Genet 76:277–284Google Scholar
  28. Wei S (1984) Elementary survey of the cultivated origin of Kaoliang (Chinese sorghum)-Studies concerning unearthed samples in the historical site, Jingchun village, Wanrong County. Agri His Sinica 2:45–50Google Scholar
  29. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130Google Scholar
  30. Wu TP (1984) Comparative karyomorphology of two species in Parasorghum. Proc Natl Sci Council Taiwan, China. Part B 6:319–325Google Scholar
  31. Wu TP (1989) Cytotaxonomic studies in two polyploid species of the genus Sorghum. Proc Nat Sci Council Taiwan, China. Part B 13:15–22Google Scholar
  32. Wu TP (1990) Sorghum macrospermum and its relationship to the cultivated species S. bicolor. Cytologia 55:141–151Google Scholar
  33. Yokota YT, Lida KY, Kato A, Tanifuji S (1989) Nucleotide sequences of the 5.8 rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J Mol Evol 29:294–301Google Scholar
  34. Zimmer EA, Jupe ER, Walbot V (1988) Ribosomal gene structure, Variation and inheritance in maize and its ancestors. Genetics 120:1125–1136Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Y. Sun
    • 1
  • D. Z. Skinner
    • 1
    • 2
  • G. H. Liang
    • 1
    • 3
  • S. H. Hulbert
    • 1
    • 4
  1. 1.Genetics ProgramKansas State UniversityManhattanUSA
  2. 2.USDA-ARS, Kansas State UniversityManhattanUSA
  3. 3.Department of AgronomyKansas State UniversityManhattanUSA
  4. 4.Department of Plant PathologyKansas State UniversityUSA

Personalised recommendations