Advertisement

Theoretical and Applied Genetics

, Volume 79, Issue 5, pp 654–656 | Cite as

Within-population variation in susceptibility to Agrobacterium tumefaciens A281 in Picea abies (L.) Karst

  • D. Clapham
  • I. Ekberg
  • G. Eriksson
  • E. E. Hood
  • L. Norell
Originals

Summary

The purpose of this study was to investigate the genetic variation of susceptibility to Agrobacterium within a Picea abies population. Tumor formation was studied in 16 open-pollinated families belonging to a central Swedish population of Picea abies. Strain A281 of Agrobacterium tumefaciens was used to infect 3-monthold seedlings in a five-block greenhouse experiment. The analysis of variance showed strong significance for the between-family variation of tumor-formation percentages, varying from 28% to 73%. The most susceptible material will be suitable for experiments on the production of transgenic plants in vitro using disarmed Agrobacterium strains.

Key words

Picea abies Agrobacterium tumefaciens Tumors In vivo Within-population variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja MR (1988) Gene transfer in forest trees. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Press, New York, pp 25–41Google Scholar
  2. Byrne MC, McDonnel RE, Wright MS, Carnes MG (1987) Strain and cultivar specificity in the Agrobacterium-bean interaction. Plant Cell Tiss Org Cult 8:3–15Google Scholar
  3. De Block M (1988) Genotype-independent leaf disc tranformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:764–774Google Scholar
  4. DeCleene M, DeLey J (1976) The host range of crown gall. Bot Rev 42:389–466Google Scholar
  5. Freeman MF, Tukey JW (1950) Transformations related to the angular and the square root. Ann Math Stat 21:607–611Google Scholar
  6. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technol 6:915–922Google Scholar
  7. Hobbs SLA, Jackson JA, Mahon JD (1989) Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Rep 8:274–277Google Scholar
  8. Hood EE, Clapham DH, Ekberg I, Johansson T (1990) T-DNA presence and opine production in tumors of Picea Abies (L.) Karst, induced by Agrobacterium tumefaciens A281. Plant Mol Biol (in press)Google Scholar
  9. Jin S, Komari T, Gordon MP, Nester EW (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425Google Scholar
  10. Mackay J, Seguin A, Lalonde M (1988) Genetic transformation of nine in vitro clones of Alnus and Betula by Agrobacterium tumerfaciens. Plant Cell Rep 7:229–232Google Scholar
  11. Morris JW, Castle LA, Morris RO (1989) Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms. Physiol Mol Plant Pathol 34:451–461Google Scholar
  12. Ooms G, Bains A, Burrell M, Karp A, Twell D, Wilcox E (1985) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium. Theor Appl Genet 71:325–329Google Scholar
  13. Puonti-Kaerlas J, Stabel P, Eriksson T (1989) Transformation of pea (Pisum sativum L.) by Agrobacterium tumefaciens. Plant Cell Rep 8:321–324Google Scholar
  14. SAS (1985) Statistical analysis system. User's guide: Statistics. SAS Institute, RaleighGoogle Scholar
  15. Stern K, Roche L (1974) Genetics of forest ecosystems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Stomp AM, Loopstra C, Sederoff RJ, Chilton WS, Fillati JA, Dupper G, Tedeschi P, Kinlaw C (1988) Development of a DNA transfer system for pines. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Press, New York, pp 231 -241Google Scholar
  17. Vahala T, Stabel P, Eriksson T (1989). Genetic transformation of willows (Salix spp.) by Agrobacterium tumefaciens. Plant Cell Rep 8:55–58Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. Clapham
    • 1
  • I. Ekberg
    • 1
  • G. Eriksson
    • 1
  • E. E. Hood
    • 2
  • L. Norell
    • 3
  1. 1.Department of Forest GeneticsSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of BiologyUtah State UniversityLoganUSA
  3. 3.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations