Cell and Tissue Research

, Volume 185, Issue 1, pp 17–42 | Cite as

Brachiopod tentacles: Ultrastructure and functional significance of the connective tissue and myoepithelial cells in Terebratalia

  • Christopher G. Reed
  • Richard A. Cloney


The fine structure of the tentacles of the articulate brachiopod Terebratalia transversa has been studied by light and electron microscopy. The epidermis consists of a simple epithelium that is ciliated in frontal and paired latero-frontal or latero-abfrontal longitudinal tracts. Bundles of unsheathed nerve fibers extend longitudinally between the bases of the frontal epidermal cells and appear to end on the connective tissue cylinder; no myoneural junctions were found. The acellular connective tissue cylinder in each tentacle is composed of orthogonal arrays of collagen fibrils embedded in an amorphous matrix. Baffles of parallel crimped collagen fibrils traverse the connective tissue cylinder in regions where it buckles during flexion of the tentacle.

The tentacular peritoneum consists of four cell types: 1) common peritoneal cells that line the lateral walls of the coelomic canal, 2) striated and 3) smooth myoepithelial cells that extend along the frontal and abfrontal sides of the coelomic canal, and 4) squamous smooth myoepithelial cells that comprise the tentacular blood channel.

Experimental manipulations of a tentacle indicate that its movements are effected by the interaction of the tentacular contractile apparatus and the resilience of the supportive connective tissue cylinder. The frontal contractile bundle is composed of a central group of striated fibers and two lateral groups of smooth fibers which function to flex the tentacle and to hold it down, respectively. The small abfrontal group of smooth myoepithelial cells effects the re-extension of the tentacle, in conjunction with the passive resiliency of the connective tissue cylinder and the concomitant relaxation of the frontal contractile bundle.

Key words

Brachiopod tentacles Connective tissue Myoepithelial cells Ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, D.: A new species and genus of Kraussinidae (Brachiopoda) with a note on feeding. Proc. Zool. Soc. London 131, 559–581 (1958)Google Scholar
  2. Atkins, D.: The early growth stages and adult structure of the lophophore of Macandrevia cranium (Müller) (Brachiopoda, Dallinidae). J. Mar. Biol. Assoc. U.K. 38, 335–350 (1959a)Google Scholar
  3. Atkins, D.: The growth stages of the lophophore and loop of the brachiopod Terebratalia transversa (Sowerby). J. Morph. 105, 401–426 (1959b)Google Scholar
  4. Atkins, D., Rudwick, M.J.S.: The lophophore and ciliary feeding mechanisms of the brachiopod Crania anomala (Müller). J. Mar. Biol. Assoc. U.K. 42, 469–480 (1962)Google Scholar
  5. Beauchamp, P. de: Classe des Brachiopodes. In: Traité de Zoologie, Tome V, fasc. II (P.-P. Grassé, ed.), pp. 1380–1499. Paris: Masson 1960Google Scholar
  6. Bemmelen, J.F. van: Untersuchungen über den anatomischen und histologischen Bau der Brachiopoda Testicardina. Jena. Z. Naturw. 16, 88–161 (1883)Google Scholar
  7. Blochmann, F.: Untersuchungen über den Bau der Brachiopoden. I. Die Anatomie von Crania anomala O.F. Müller, pp. 1–65. Jena: Gustav Fischer 1892Google Scholar
  8. Blochmann, F.: Untersuchungen über den Bau der Brachiopoden. II. Die Anatomie von Discinisca lamellosa (Broderip) und Lingula anatina (Brugière), pp. 69–124. Jena: Gustav Fischer, 1900Google Scholar
  9. Bullock, T.H. Horridge, G.A.: Structure and function in the nervous systems of invertebrates, Vol. I, pp. 50. San Francisco and London: W.H. Freeman and Co. 1965Google Scholar
  10. Cavey, M.J., Cloney, R.A.: Fine structure and differentiation of ascidian muscle. I. Differentiated caudal musculature of Distaplia occidentalis tadpoles. J. Morph. 138, 349–374 (1972)Google Scholar
  11. Chuang, S.H.: The ciliary feeding mechanisms of Lingula unguis (L.) (Brachiopoda). Proc. Zool. Soc. London 127, 167–189 (1956)Google Scholar
  12. Dall, W.H.: Annotated list of the recent Brachiopoda in the collection of the United States National Museum, with descriptions of thirty-three new forms. Proc. U.S. Nat. Museum 57, 261–377 (1921)Google Scholar
  13. Dawydoff, C., Grasse, P.-P.: Classe des Phoronidiens. In: Traité de Zoologie, Tome V, fasc. I (P.-P. Grassé, ed.), pp. 1008–1053. Paris: Masson, 1959Google Scholar
  14. Dilly, P.N.: The structure of the tentacles of Rhabdopleura compacta (Hemichordata) with special reference to neurociliary control. Z. Zellforsch. 129, 20–39 (1972)Google Scholar
  15. Fawcett, D.W., McNutt, N.S.: The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J. Cell Biol. 42, 1–45 (1969)Google Scholar
  16. Florey, E., Cahill, M.A.: Ultrastructure of sea urchin tube feet. Evidence for connective tissue involvement in motor control. Cell Tiss. Res. 177, 195–214 (1977)Google Scholar
  17. Gordon, D.P.: Microarchitecture and function of the lophophore in the bryozoan Cryptosula pallasiana. Marine Biol. 27, 147–163 (1974)Google Scholar
  18. Gosline, J.M.: Connective tissue mechanics of Metridium senile. II. Visco-elastic properties and macromolecular model. J. exp. Biol. 55, 775–795 (1971)Google Scholar
  19. Gupta, B.L., Little, C.: Studies on Pogonophora. II. Ultrastructure of the tentacular crown of Siphonobrachia. J. Mar. Biol. Ass. U.K. 49, 717–741 (1969)Google Scholar
  20. Hancock, A.: On the organisation of the brachiopoda. Phil. Trans. 148, 791–869 (1859)Google Scholar
  21. Helmcke, von J-G.: Brachiopoda. In: Kükenthal's Handbuch der Zoologie, V. 3, II Teil 5, pp. 139–262. Berlin-Leipzig: Walter de Gruyter and Co. 1937Google Scholar
  22. Heyer, C.B., Kater, S.B.: Neuromuscular systems in molluscs. Amer. Zool. 13, 249–270 (1973)Google Scholar
  23. Huxley, T.H.: Contributions to the Anatomy of the Brachiopoda. Proc. roy. Soc. London 7 (1854)Google Scholar
  24. Hyman, L.H.: The lophophorate coelomates-Phylum Brachiopoda. In: The invertebrates, Vol. 5, Chap. 21, pp. 516–609. New York: McGraw-Hill. 1959Google Scholar
  25. Johnson, E.A., Sommer, J.R.: A strand of cardiac muscle. Its ultrastructure and the electrophysiological implications of its geometry. J. Cell Biol. 33, 103–129 (1967)Google Scholar
  26. Levine, R.J.C., Elfvin, M., Dewey, M.M., Walcott, B.: Paramyosin in invertebrate muscles. II. Content in relation to structure and function. J. Cell Biol. 71, 273–279 (1976)Google Scholar
  27. Luft, J.H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)Google Scholar
  28. Lutaud, G.: L'innervation du lophophore chez le Bryozoaire chilostome Electra pilosa (L.) Z. Zellforsch. 140, 217–234 (1973)Google Scholar
  29. Mattox, N.T.: Observations on the brachiopod communities near Santa Catalina Island. Essays Nat. Sci. in honor of Captain Allan Hancock, pp. 73–86. Univ. Southern Calif. Press 1955Google Scholar
  30. McCammon, H.M., Reynolds, W.A.: Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Mar. Biol. 34, 41–51 (1976)Google Scholar
  31. Nielsen, C., Rostgaard, J.: Structure and function of an entoproct tentacle with a discussion of ciliary feeding types. Ophelia 15, 115–140 (1976)Google Scholar
  32. Oliphant, L.W., Cloney, R.A.: The ascidian myocardium: Sarcoplasmic reticulum and excitationcontraction coupling. Z. Zellforsch 129, 395–412 (1972)Google Scholar
  33. Orton, J.: On ciliary mechanisms in brachiopods and some polychaetes, with a comparison of the ciliary mechanisms on the gills of molluscs, Protochordata, Brachiopods, and cryptocephalous polychaetes, and an account of the endostyle of Crepidula and its allies. J. Mar. Biol. Ass. U.K. 10, 283–311 (1914)Google Scholar
  34. Person, P., Philpott, D.E.: The nature and significance of invertebrate cartilages. Biol. Rev. 44, 1–16 (1969)Google Scholar
  35. Prosser, C.L.: Comparative physiology of non-striated muscles. In: Invertebrate Nervous Systems. Their significance for Mammalian Neurophysiology (C.A.G. Wiersma, ed.), pp. 133–149. Chicago and London: The University of Chicago Press 1967Google Scholar
  36. Reynolds, E.S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–211 (1963)Google Scholar
  37. Reynolds, W.A., McCammon, H.M.: Aspects of the functional morphology of the lophophore in articulate brachiopods. Amer. Zool. 17, 121–132 (1977)Google Scholar
  38. Richardson, K.C., Jarett, L., Finke, E.H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960)Google Scholar
  39. Rudwick, M.J.S.: Living and Fossil Brachiopods. London: Hutchinson and Co. 1970Google Scholar
  40. Schiaffino, S., Margreth, A.: Coordinated development of the sarcoplasmic reticulum and T-system during postnatal differentiation of rat skeletal muscle. J. Cell Biol. 41, 855–875 (1969)Google Scholar
  41. Silén, L.: On the nervous system of Phoronis. Ark. Zool. 6, 1–40 (1954)Google Scholar
  42. Storch, V., Welsch, U.: Elektronenmikroskopische und enzymhistochemische Untersuchungen über Lophophor und Tentakeln von Lingula unguis (L.)(Brachiopoda). Zool. Jb. Anat. 96, 225–237 (1976)Google Scholar
  43. Thomson, J.A.: Brachiopod morphology and genera (Recent and Teriary). N.Z. Bd. Sci. Art, Manual 7, 338p. (1927)Google Scholar
  44. Williams, A., Rowell, A.J.: Brachiopod anatomy. In: Treatise on invertebrate paleontology: part H: Brachiopoda (R.C. Moore, ed.), pp. H6-H57. The University of Kansas Press and the Geol. Soc. America 1965Google Scholar
  45. Winkelman, L.: Comparative studies of paramyosins. Comp. Biochem. Physiol. 55B, 391–397 (1976)Google Scholar
  46. Wood, R.L., Luft, J.H.: The influence of buffer systems on fixation with osmium tetroxide. J. Ultrastruct. Res. 12, 22–45 (1965)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Christopher G. Reed
    • 1
  • Richard A. Cloney
    • 1
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA

Personalised recommendations