Theoretical and Applied Genetics

, Volume 92, Issue 6, pp 733–743 | Cite as

Ribosomal DNA variations in Erianthus, a wild sugarcane relative (Andropogoneae-Saccharinae)

  • P. Besse
  • C. L. McIntyre
  • N. Berding
Article

Abstract

Variation at the 18S+26S and 5S ribosomal DNA loci was assessed on 62 Erianthus Michx. clones, representing 11 species, and 15 clones from two Saccharum L. species used as a reference. Genus-specific markers for Erianthus Michx. sect. Ripidium Henrard (Old World species) were identified. Ribosomal DNA units in Erianthus sect. Ripidium exhibited an additional BamHI site compared to Saccharum, and 5S units showed length and restriction-site differences between Erianthus and Saccharum. These markers will be useful to follow introgression in Saccharum x Erianthus hybrids. Six ribosomal units (for 18+26S genes) were revealed in Erianthus sect. Ripidium, differing by restriction-site positions and/or length. These results provided new information on species relationships and evolution within the genus Erianthus. The Indonesian and Indian forms of E. arundinaceus (Retz.) Jeswiet gave different restriction patterns, which were similar to those of E. bengalense (Retz.) R. C. Bharadwaja and E. procerus (Roxb.) Raizade, respectively. The two 2n=20 species, E. ele-phantinus Hook.f. and E. ravennae (L.) P. Beauv., could also be differentiated at this locus. Two of the New World Erianthus species studied, E. rufipilus (Steud.) Griseb. and E. longisetosus Andersson, appeared more like Erianthus sect. Ripidium, whereas E. trinii Hack, and E. brevibardis Michx. showed patterns consistent with Miscanthus sinensis Andersson and S. spontaneum L., respectively. Finally, the comparison of rDNA restriction maps among Erianthus sect. Ripidium, Saccharum, sorghum and maize, led to unexpected conclusions concerning the relationships between the different genera and the position of Erianthus in the “Saccharum complex”.

Key words

rDNA 5S DNA RFLP Erianthus sect. Ripidium Saccharum complex Germplasm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Janabi SM, McClelland M, Petersen C, Sobral BWS (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet 88:933–944Google Scholar
  2. Appels R, Gerlach WL, Dennis ES, Swift H, Peacock WJ (1980) Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78:293–311Google Scholar
  3. Appels R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: SK Dutta (ed) DNA systematics. CRC Press, Boca Raton, Florida, pp 81–135Google Scholar
  4. Berding N, Koike H (1980) Germplasm conservation of the Saccharum complex: a collection from the Indonesian Archipelago, Hawaii. Plant Rec 59:176–187Google Scholar
  5. Berding N, Roach BT (1987) Germplasm collection, maintenance and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier Press, Amsterdam, pp 143–210Google Scholar
  6. Besse P, Lebrun P, Seguin M, Lanaud C (1993) Ribosomal DNA variations in wild and cultivated rubber tree (Hevea brasiliensis). Genome 36:1049–1057Google Scholar
  7. Borisjuk N, Borisjuk L, Petjuch G, Hemleben V (1993) Comparison of nuclear ribosomal RNA genes among Solanum species and other Solanaceae. Genome 37:271–279Google Scholar
  8. Burner DM (1991) Cytogenetic analyses of sugarcane relatives (Andropogoneae: Saccharinae). Euphytica 54:125–133Google Scholar
  9. Burner DM, Webster RD (1994) Cytological studies on north american species of Saccharum (Poaceae: Andropogoneae). SIDA 16: 233–244Google Scholar
  10. Chalmers KJ, Waugh R, Watters J, Forster BP, Nevo E, Abbott RJ, Powell W (1992) Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theor Appl Genet 84:313–322Google Scholar
  11. Cordesse F, Second G, Delseny M (1990) Ribosomal gene spacer length variability in cultivated and wild rice species. Theor Appl Genet 79:81–88Google Scholar
  12. Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier Press, Amsterdam, pp 7–84Google Scholar
  13. Daniels J, Smith P, Paton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed Newslett 36:24–39Google Scholar
  14. Daniels J, Paton N, Smith P, Williams CA (1980) Further studies on leaf flavonoids as evolutionary indicators in Saccharum officinarum L. Proc Int Soc Sugar Cane Technol 17:1317–1335Google Scholar
  15. Delseny M, McGrath JM, This P, Chevre AM, Quiros CF (1990) Ribosomal RNA genes in diploid and amphidiploid Brassica and related species: organization, polymorphism, and evolution. Genome 33:733–744Google Scholar
  16. D'Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1:12–15Google Scholar
  17. D'Hont A, Rao PS, Feldmann P, Grivet L, Islam-Fridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91:320–326Google Scholar
  18. Dover G, Brown S, Coen E, Dallas J, Strachant T, Trick H (1982) The dynamics of genome evolution and species differentiation. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, London, pp 343–372Google Scholar
  19. Dubcovsky J, Lewis SM, Hopp EH (1992) Variation in the restriction fragments of 18S−26S rRNA loci in South American Elymus (Triticeae). Genome 35:881–885Google Scholar
  20. Dvorak J, Zhang HB, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003–1016Google Scholar
  21. Faivre-Rampant P, Jeandroz S, Lefevre F, Lemoine M, Villar M, Berville A (1992) Ribosomal DNA studies in poplars: Populus deltoides, P. nigra, P. trichocarpa, P. maximowiczii, and P. alba. Genome 35:733–740Google Scholar
  22. Flavell R (1980) The molecular characterization and organization of plant chromosomal DNA sequences. Annu Rev Plant Physiol 31: 569–596CrossRefGoogle Scholar
  23. Flavell RB, O'Dell M, Sharp P, Nevo E, Beiles A (1986) Variation in the intergenic spacer of ribosomal DNA of wild wheat, Triticum dicoccoides, in Israel. Mol Biol Evol 3:547–558.Google Scholar
  24. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedGoogle Scholar
  25. Glaszmann JC, Lu YH, Lanaud C (1990) Variation of nuclear ribosomal DNA in sugarcane. J Genet Breed 44:191–198Google Scholar
  26. Grassl CO (1972) Taxonomy of Saccharum relatives: Sclerostachya, Narenga and Erianthus. Proc Int Soc Sugar Cane Technol 14: 240–248Google Scholar
  27. Havey MJ (1992) Restriction enzyme analysis of the nuclear 45S ribosomal DNA of six cultivated Allium alliaceae. Plant Syst Evol 181:45–55Google Scholar
  28. Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: G Kahl (ed) Architecture of eukaryotic genes. Verlagsgesellschaft mbH, Weinheim, pp. 371–383Google Scholar
  29. Hemleben V, Zentgraf U, King K, Borijuk N, Schweizer G (1992) Middle repetitive and highly repetitive sequences detect polymorphisms in plants. Adv Mol Gen 5:157–170Google Scholar
  30. Hilu KW, Johnson JL (1992) Ribosomal DNA variation in finger millet and wild species of Eleusine (Poaceae). Theor Appl Genet 83:895–902Google Scholar
  31. Hoisington D (1992) Laboratory protocols: CIMMYT. Applied Molecular Genetics Laboratory, D.F.: CIMMYT, MexicoGoogle Scholar
  32. Jorgensen RA, Cuellar RE, Thompson WF, Kavanagh TA (1987) Structure and variation in ribosomal RNA genes of pea. Characterization of a cloned rDNA repeat and chromosomal rDNA variants. Plant Mol Biol 8:3–12Google Scholar
  33. Kandasami PA, Sreenivasan TV, Ramana Rao TC, Palanichami K, Natarajan BV, Alexander KC, Madhusudana Rao M, Mohan Raj D (1983) Catalogue on sugarcane genetic resources. 1. Saccharum spontaneum L. Sugarcane Breeding Institute (Indian Council of Agricultural research), CoimbatoreGoogle Scholar
  34. Kim WK, Innes RL, Kerber ER (1992) Ribosomal DNA repeat unit polymorphism in six Aegilops species. Genome 35:510–515Google Scholar
  35. Lagudah ES, Clarke BC, Appels R (1989) Phylogenetic relationships of Triticum tauschii, the D-genome donor to hexaploid wheat. 4. Variation and chromosomal location of 5S DNA. Genome 32: 1017–1025Google Scholar
  36. Lanaud C, Tezenas Du Montcel H, Jolivot MP, Glaszmann JC, Gonzalez De Leon D (1992) Variation of ribosomal spacer length among wild and cultivated banana. Heredity 68:147–156Google Scholar
  37. Lapitan NLV (1992) Organization and evolution of higher-plant nuclear genes. Review. Genome 35:171–181Google Scholar
  38. Laurent V, Risterucci AM, Lanaud C (1993) Variability for nuclear ribosomal genes within Theobroma cacao. Heredity 71:96–103Google Scholar
  39. Lawrence GJ, Appels R (1986) Mapping the nucleolus organiser region, seed protein loci and isozyme loci on chromosome 1R in rye. Theor Appl Genet 71:742–749Google Scholar
  40. McIntyre CL, Winberg B, Houchins K, Appels R, Baum BR (1990) Relationships between Oryza species (Poaceae) based on 5S DNA sequences. Pl Syst Evol 183:249–264Google Scholar
  41. Mohan N, Sreenivasan TV (1983) Chromosome number in the genus Erianthus, Michx. (Poaceae) of the Indonesian Arquipelago. Cell Chromosome Res 6:14–16Google Scholar
  42. Panje RR, Babu CN (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172Google Scholar
  43. Reddy P, Appels R (1989) A second locus for the 5S multigene family in Secale L.: sequence divergence in two lineages of the family. Genome 32:456–467Google Scholar
  44. Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509–520Google Scholar
  45. Saghai Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018PubMedGoogle Scholar
  46. Sano Y, Sano R (1990) Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome 33: 209–218Google Scholar
  47. Scoles GJ, Gill BS, Xin ZY, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions in the Triticeae. Pl Syst Evol 160:105–122Google Scholar
  48. Sobral BWS, Braga DPV, LaHood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction-enzyme-site mutations in the Saccharinae Grisb. subtribe of the Andropogoneae Dumort. tribe. Theor Appl Genet 87:843–853Google Scholar
  49. Springer PS, Zimmer EA, Bennetzen JL (1989) Genomic organization of the ribosomal DNA of sorghum and its close relatives. Theor Appl Genet 77:844–850Google Scholar
  50. Sreenivasan TV, Nair NV (1991) Catalogue on genetic resources. III. Saccharum officinarum L. Sugarcane Breeding Institute (Indian Council of Agricultural Research), CoimbatoreGoogle Scholar
  51. Terauchi R, Chikaleke VA, Thottappilly G, Kahn SK (1992) Origin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. Theor Appl Genet 83:743–751Google Scholar
  52. Vijayalakshmi U, Rao JT (1963) Phytosterols in the leaves of Saccharum and allied genera. Proc Int Soc Sugar Cane Technol 11: 578–582Google Scholar
  53. Vijayalakshmi U (1967) Taxonomy, polyploidy and cytogeography in the genus Erianthus Michx. PhD thesis, University of Madras (cited by Daniels and Roach 1987)Google Scholar
  54. Waldron JC, Glaziou KT (1972) Isoenzymes as a method of vertical identification in sugarcane. Proc Int Soc Sugar Cane Technol 14:249–256Google Scholar
  55. Williams CA, Harborne JB, Smith P (1974) The taxonomic significance of leaf flavonids in Saccharum and related genera. Phytochemistry 13:1141–1149Google Scholar
  56. Zimmer EA, Jupe ER, Walbot V (1988) Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120: 1125–1136Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. Besse
    • 1
  • C. L. McIntyre
    • 1
  • N. Berding
    • 2
  1. 1.CSIRO Division of Tropical Crops and PasturesSt LuciaAustralia
  2. 2.BSES Meringa Experimental StationGordonvaleAustralia

Personalised recommendations