Theoretical and Applied Genetics

, Volume 88, Issue 2, pp 193–198

Genetic diversity in cocoa revealed by cDNA probes

  • V. Laurent
  • A. M. Risterucci
  • C. Lanaud
Article

Abstract

The variability of the cocoa (Theobroma cacao) nuclear genome was investigated. A total of 203 cocoa clones was surveyed for restriction fragment length polymorphisms (RFLPs) using four restriction endonuclease and 31 seed cDNA probes. A high level of polymorphism has been found. This study points to a structuring of the species that fits with the distinction between the Criollo and Forastero populations. These results combined with previously obtained nuclear rDNA and mtDNA data allow us to propose new hypotheses on the origin and evolution of the different cocoa populations.

Key words

Theobroma cacao RFLP diversity study seed cDNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADDAD (1983) Manuel de référence. Association pour le Développement et la diffusion de l'Analyse des Données., ParisGoogle Scholar
  2. Benzecri JP (1973) L'analyse des correspondances. In: Dunod (ed) L'analyse des données, tome 2 Paris, pp 616Google Scholar
  3. Brummer EC, Kochert G, Bouton JH (1991) RFLP variation in diploid and tetraploid alfalfa. Theor Appl Genet 83:89–96Google Scholar
  4. Chase CD, Ortega VM, Vallejos CE (1991) DNA restriction fragment length polymorphisms correlate with isozyme diversity in Phaseolus vulgaris L. Theor Appl Genet 81:806–811Google Scholar
  5. Cheesman EE (1944) Notes on the nomenclature, classification and possible relationships of cocoa populations. Trop Agri 21:144–159Google Scholar
  6. Chowdhury (1991) One step “miniprep” method for the isolation of plasmid DNA. Nucleic Acids Res 19:2792Google Scholar
  7. Cuatrecasas J (1964) Cacao and its allies: a taxonomic revision of the genus Theobroma. Bull US National Museum, Smithsonian Institution, Washington 35:379–614Google Scholar
  8. Debener T, Salamini F, Gebhardt C (1991) The use of RFLP (Restriction Fragment Length Polymorphisms) detects germplasm introgressions from wild species into potato (Solanum tuberosum ssp. tuberosum) breeding lines. Plant Breed 106:173–181Google Scholar
  9. Delseny M, Grellet F, Tremoussaygue D, Raynal M, Panabieres F (1986) Structure, evolution et expression de l'ADN nucléaire des plantes supérieures. In: Colloque de la Société de Botanique, Orsay, pp 21Google Scholar
  10. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13PubMedGoogle Scholar
  11. Geever RF, Katterman FRH, Endrizzi JE (1989) DNA hybridization analyses of a Gossypium allotetraploid and two closely related diploid species. Theor Appl Genet 77:553–559Google Scholar
  12. Graner A, Siedler H, Jahoor A, Hermann RG, Wenzel G (1990) Assesment of the degree and the type of restriction fragment length polymorphism in barley (Hordeum vulgare). Theor Appl Genet 80:826–832Google Scholar
  13. Havey MJ, Muehlbauer FJ (1989) Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77:395–401Google Scholar
  14. Jarrell DC, Roose ML, Traugh SN, Kupper RS (1992) A genetic map of Citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor Appl Genet 84:49–56Google Scholar
  15. Lanaud C (1987) Nouvelles données sur la biologie du cacaoyer (Theobroma cacao L.): diversité des populations, système d'incompatibilité, haploïdes spontanés. Leurs conséquences pour l'amélioration génétique de cette espèce. Doctorat d'état, Paris IXGoogle Scholar
  16. Lanaud C, Hamon P, Duperray C (1992) Estimation of nuclear DNA content of Theobroma cacao L. by flow cytometry. Café Cacao Thé 36:3–8Google Scholar
  17. Landry BS, Kesseli RV, Farrara B, Michelmore RW (1987) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116:331–337Google Scholar
  18. Lapitan NLV (1992) Organization and evolution of higher plant nuclear genomes. Genome 35:171–181Google Scholar
  19. Laurent V, Risterucci AM, Lanaud C (1993a) Variability for nuclear ribosomal genes within Theobroma cacao. Heredity 71:96–103Google Scholar
  20. Laurent V, Risterucci AM, Lanaud C (1993b) Chloroplast and mitochondrial DNA diversity in Theobroma cacao. Theor Appl Genet 87:81–88Google Scholar
  21. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829Google Scholar
  22. McDonald RJ, Swift GH, Przybyla AE, Chirgwin JM (1987) Isolation RNA using guanidium salts. Methods Enzymol 152:219–227Google Scholar
  23. McGrath JM, Quiros CF (1992) Genetic diversity at isozyme and RFLP loci in Brassica compestris as related to crop type and geographical origin. Theor Appl Gnenet 83:783–790Google Scholar
  24. Miller JC, Tanksley TD (1993) Effect of different restriction enzymes, probe source, and probe length on detecting restriction fragment length polymorphism in tomato. Theor Appl Genet 80:385–389Google Scholar
  25. Neuhausen SL (1992) Evaluation of restriction fragment length polymorphism in Cucumis melo. Theor Appl Genet 83:379–384Google Scholar
  26. Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208Google Scholar
  27. Prance GT (1973) Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon Basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazonica 3:5–28Google Scholar
  28. Ratisbona LR (1976) The climate of Brazil. In: W. Scherdtfeger (eds) Climates of Central and South America. Elsevier, New York, pp 219–294Google Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (second edition). Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Simpson BB, Haffer J (1978) Speciation patterns in the Amazonian forest biota. Annu Rev Ecol Syst 9:497–518Google Scholar
  31. Snow JW (1976) The climate of northern South America. In: W. Scherdtfeger (eds) Climates of Central and South America. Elsevier, New York, pp 295–404Google Scholar
  32. Wang ZY, Tanksley SD (1989) Restriction fragment length polymorphism in Oryza sativa L. Genome 32:1113–1118Google Scholar
  33. Webb DM, Knapp SJ, Tagliani LA (1992) Restriction fragment length polymorphism and allozyme linkage map of Cuphea lanceolata. Theor Appl Genet 83:528–532Google Scholar
  34. Zamir D, Tanksley SD (1988) Tomato genome is composed largely of fast-evolving, low-copy-number sequences. Mol Gen Genet 213:254–261Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • V. Laurent
    • 1
  • A. M. Risterucci
    • 1
  • C. Lanaud
    • 1
  1. 1.AGETROP/CIRADMontpellier cedexFrance

Personalised recommendations