Journal of Comparative Physiology A

, Volume 178, Issue 6, pp 813–830 | Cite as

The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina)

  • M. S. Tu
  • M. H. Dickinson
Original Paper


We used a combination of high speed video and electrophysiological recordings to investigate the relationship between wing kinematics and the firing patterns of the first (b1) and second (b2) basalar muscles of tethered flying blowflies (Calliphora vicina). The b1 typically fires once during every wing stroke near the time of the dorsal stroke reversal. The b2 fires either intermittently or in bursts that may be elicited by a visual turning stimulus. Sustained activation of the b1 at rates near wing beat frequency appears necessary for the tonic maintenance of stroke amplitude. In addition, advances in the phase of b1 activation were correlated with both increased wing protraction during the down-stroke and increased stroke amplitude. Similar kinematic alterations were correlated with b2 spikes, and consequently, both muscles may function in the control of turns toward the contralateral side. The effects of the two muscles were evident within a single stroke period and decayed quickly. Kinematic changes correlated with b1 phase shifts were graded, suggesting a role in compensatory course stabilization. In contrast, b2 spikes were correlated with all-or-none changes in the wing stroke, a characteristic consistent with a role in mediating rapid turns towards or away from objects.

Key words

Kinematics Insect flight Motor control Diptera Muscle 



first basalar muscle


second basalar muscle


pleural wing process


radial stop


wing span ·


angle between the stroke plane and the longitudinal body axis


stroke amplitude


stroke elevation


wing length


phase of b1 activation


phase of b2 activation


stroke deviation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmann-Erb D, Heide G (1990) Kontraktionsmodus direkter Flugsteuermuskeln von Calliphora. Thieme, StuttgartGoogle Scholar
  2. Dickinson MH (1994) The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J Exp Biol 192: 179–206Google Scholar
  3. Dickinson MH, Götz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174: 45–64Google Scholar
  4. Dickinson MH, Lehmann F-O, Götz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182: 173–189Google Scholar
  5. Egelhaaf M (1989) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161: 777–783Google Scholar
  6. Ellington CP (1984) The aerodynamics of hovering insect flight III. Kinematics. Phil Trans R Soc Lond B 305: 41–78Google Scholar
  7. Ennos AR (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142: 49–85Google Scholar
  8. Ewing AW (1979a) The neuromuscular basis of courtship song in Drosophila: the role of direct and axillary wing muscles. J Comp Physiol 130: 87–93Google Scholar
  9. Ewing AW (1979b) The role of feedback during singing and flight in Drosophila melanogaster. Physiol Entomol 4: 329–337Google Scholar
  10. Fayyazuddin A, Chan WP, Jordan CE, Dickinson MH (1994) The role of haltere afferents in the activity of a steering muscle in the blowfly, Calliphora vicina. Soc Neurosci Abstr 20: 1595Google Scholar
  11. Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4: 199–208Google Scholar
  12. Götz KG (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA- report 2. Fischer, Stuttgart, pp 21–34Google Scholar
  13. Götz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J Exp Biol 128: 35–46Google Scholar
  14. Grodinsky DL, Morozov PP (1993) Vortex formation during tethered flight of functionally and morphologically two-winged insects, including evolutionary considerations on insect flight. J Exp Biol 182: 11–40Google Scholar
  15. Heide G (1968) Flugsteuerung durch nicht-fibrilläre Flugmuskeln bei der Schmeißfliege Calliphora. Z Vergl Physiol 59: 456–460Google Scholar
  16. Heide G (1971a) Die Funktion der nicht-fibrillären Flugmuskeln bei der Schmeißfliege Calliphora. Teil I: Lage, Insertionsstellen und Innervierungsmuster der Muskeln. Zool Jb Physiol 76: 87–98Google Scholar
  17. Heide G (1971b) Die Funktion der nicht-fibrillären Flugmuskeln bei der Schmeißfliege Calliphora. Teil II: Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76: 99–137Google Scholar
  18. Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybern 20: 99–112Google Scholar
  19. Heide G (1983) Neural mechanisms of flight contol in Diptera. In: Nachtigall W (ed) BIONA-report 2. Fischer, Stuttgart, pp 35–52Google Scholar
  20. Heisenberg M, Wolf R (1979) On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. J Comp Physiol 130: 113–130Google Scholar
  21. Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, BerlinGoogle Scholar
  22. Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowfly Calliphora during flight. Proc R Soc Lond B 227: 455–482Google Scholar
  23. Hollick FSJ (1940) The flight of the dipterous fly Muscina sabulans Fallen. Phil Trans R Soc Lond B 230: 357–390Google Scholar
  24. Kutsch W, Hug W (1981) Dipteran flight motor pattern: Invariabilities and changes during postlarval development. J Neurobiol 12: 1–14Google Scholar
  25. Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). J Comp Physiol 89: 331–357Google Scholar
  26. Lehmann F-O (1990) Flugsteuerung bei der Fliege Drosophila: Elektrische Erregung des Sternobasalarmuskels in Abhängigkeit von der Flügelschlagphase. Diplomarbeit Universität TübingenGoogle Scholar
  27. Miyan JA, Ewing AW (1984) A wing synchronous receptor for the dipteran flight motor. J Insect Physiol 30: 567–574Google Scholar
  28. Miyan JA, Ewing AW (1985a) How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Phil Trans R Soc Lond B 311: 271–302Google Scholar
  29. Miyan JA, Ewing AW (1985b) Is the ‘click’ mechanism of dipteran flight an artifact of CCl4 anaesthesia? J Exp Biol 116: 313–322Google Scholar
  30. Miyan JA, Ewing AW (1988) Further observations on dipteran flight: details of the mechanism. J Exp Biol 136: 229–241Google Scholar
  31. Nachtigall W (1966) Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs. Z Vergl Physiol 52: 155–211Google Scholar
  32. Nachtigall W (1981) Insect flight aerodynamics. In: Herreid CF II, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum, New York, pp 127–162Google Scholar
  33. Nachtigall W, Roth W (1983) Correlations between stationary measurable parameters of wing movement and aerodynamic force production in the blowfly (Calliphora vicina R.-D.). J Comp Physiol 150: 251–260Google Scholar
  34. Nachtigall W, Wilson DM (1967) Neuro-muscular control of dipteran flight. J Exp Biol 47: 77–97Google Scholar
  35. Nalbach G (1989) The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight. J Comp Physiol A 165: 321–331Google Scholar
  36. Pfau HK (1987) Critical comments on a ‘novel’ mechanical model of dipteran flight' (Miyan & Ewing, 1958). J Exp Biol 128: 463–468Google Scholar
  37. Tu MS, Dickinson MH (1994) Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. J Exp Biol 192: 207–224Google Scholar
  38. Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) I. Organization of the flight motor. Phil Trans R Soc Lond B 312: 527–551Google Scholar
  39. Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targerts. Phil Trans R Soc Lond B 312: 553–579Google Scholar
  40. Wagner H (1986c) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) III. Interactions between angular movement induced by wide- and smallfield stimuli. Phil Trans R Soc Lond B 312: 581–595Google Scholar
  41. Wisser A (1988) Wing beat of Calliphora erythrocephala: turning axis and gearbox of the wing base (Insecta, Diptera). Zoomorphology 107: 359–369Google Scholar
  42. Wisser A, Nachtigall W (1984) Functional-morphological investigation on the flight muscles and their insertion points in the blowfly Calliphora erythrocephala (Insecta, Diptera). Zoomorphology 104: 188–195Google Scholar
  43. Wood J (1970) A study of the instantaneous air velocities in a plane behind the wings of certain Diptera flying in a wind tunnel. J Exp Biol 52: 17–25Google Scholar
  44. Zanker JM (1990a) The wing beat of Drosophila melanogaster I. Kinematics. Phil Trans R Soc Lond B 327: 1–18Google Scholar
  45. Zanker JM (1990b) The wing beat of Drosophila melanogaster III. Control. Phil Trans R Soc Lond B 327: 45–64Google Scholar
  46. Zanker JM, Götz KG (1990) The wing beat of Drosophila melanogaster II. Dynamics. Phil Trans R Soc Lond B 327: 19–44Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. S. Tu
    • 1
  • M. H. Dickinson
    • 1
  1. 1.The Department of Anatomy and Organismal BiologyThe University of ChicagoChicagoUSA

Personalised recommendations