Cell and Tissue Research

, Volume 186, Issue 3, pp 453–463

Calcium and sulphur in neurosecretory granules and calcium in mitochondria as determined by electron microscope X-ray microanalysis

  • Tom Christian Normann
  • Theodore A. Hall
Article

Summary

Sections of neurosecretory cells fixed in glutaraldehyde and osmium tetroxide were studied by means of an EMMA-4 analytical microscope. Secretory granules in neurosecretory cells of the corpus cardiacum and of the brain, both in the desert locust Schistocerca and in the blowfly Calliphora, as well as neurosecretory granules in posterior pituitaries of the frog Rana and of the albino rat all contain a high concentration of calcium. A distinct sulphur peak was also a constant feature.

In neurosecretory cells of the corpus cardiacum of Schistocerca the chromatin contained a high concentration of calcium. The mitochondria also contained much calcium, but part of this disappeared during preparation except when fixative and wash contained calcium chloride. By block staining with uranyl acetate most calcium is displaced from the mitochondria, whereas most of the calcium remains in the neurosecretory granules. Since the calcium peaks in spectra from neurosecretory granules appear of similar size, regardless of variations in the preparative procedure, this calcium must be firmly bound. The possible role of the calcium bound to the neurosecretory substance is discussed.

The presence of sulphur in insect neurosecretory granules indicates the presence of a protein besides the hormone, i.e., an insect neurophysin.

Key words

Neurosecretory granules (Insects) Mitochondria Calcium Sulphur Microanalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.W.M., Sloper, J.C.: Technique for demonstrating neurosecretory material in the human hypothalamus. Lancet 1955I, 651–652Google Scholar
  2. Arvy, L., Gabe, M.: Histochemistry of the neurosecretory product of the pars intercerebralis of pterygote insects. In: Neurosecretion (H. Heller and R.B. Clark, eds.), pp. 331–344. New York: Academic Press 1962Google Scholar
  3. Baker, P.F.: Excitation-secretion coupling. Recent Advan. Physiol. 9, 51–86 (1974)Google Scholar
  4. Bloch, R.J., Van Dyke, H.B.: Amino acids in posterior pituitary protein. Arch. Biochem. Biophys. 36, 1–4 (1952)Google Scholar
  5. Borle, A.B.: Calcium metabolism at the cellular level. Fed. Proc. 32, 1944–1950 (1973)Google Scholar
  6. Borowitz, J.L.: Effect of acetylcholine on the subcellular distribution of 45Ca in bovine adrenal medulla. Biochem. Pharmacol. 18, 715–723 (1969)Google Scholar
  7. Borowitz, J.L., Fuwa, K., Weiner, N.: Distribution of metals and catecholamines in bovine adrenal medulla subcellular fractions. Nature (Lond.) 205, 42–43 (1965)Google Scholar
  8. Carafoli, E., Lehninger, A.L.: A survey on the interaction of calcium ions with mitochondria from different tissues and species. Biochem. J. 122, 681–690 (1971)Google Scholar
  9. Du Vigneaud, V., Lawler, H.C., Popenoe, E.A.: Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Amer. chem. Soc. 75, 4880–4881 (1953a)Google Scholar
  10. Du Vigneaud, V., Ressler, C., Trippett, C.: The sequence of amino acids in oxytocin with a proposal for the structure of oxytocin. J. biol. Chem. 205, 949–957 (1953b)Google Scholar
  11. Hall, T.A., Anderson, H.C., Appleton, T.C.: The use of thin specimens for X-ray microanalysis in biology. J. Microscopy 99, 177–182 (1973)Google Scholar
  12. Helle, K.B., Serck-Hanssen, G.: Matrix phase organization at the molecular level in the chromaffin granule. Abstr. 3. Int. Catecholamine Symposium, Strassbourg (1973)Google Scholar
  13. Johnson, R.G., Scarpa, A.: Ion permeability of isolated chromaffin granules. J. gen. Physiol. 68, 601–631 (1976)Google Scholar
  14. Krogh, I.M., Normann, T.C.: The corpus cardiacum neurosecretory cells of Schistocerca gregaria. Electron microscopy of resting and secreting cells. Acta zool. 58, 69–78 (1977)Google Scholar
  15. Lazarewicz, J.W., Haljamäe, H., Hamberger, A.: Calcium metabolism in isolated brain cells and subcellular fractions. J. Neurochem. 22, 33–46 (1974)Google Scholar
  16. Lust, W.D., Robinson, J.D.: Calcium accumulation by isolated nerve ending particles from brain. I. The site of energy-dependent accumulation. J. Neurobiol. 1, 303–316 (1970)Google Scholar
  17. Normann, T.C.: Neurosecretion by exocytosis. Int. Rev. Cytol. 46, 1–77 (1976)Google Scholar
  18. Normann, T.C., Samaranayaka-Ramasamy, M.: Secretory hyperactivity and mitochondrial changes in neurosecretory cells of an insect. Cellular effects of the insecticide lindane. Cell Tiss. Res., 183, 61–69 (1977)Google Scholar
  19. Oschman, J.L., Hall, T.A. Peters, P.D., Wall B.J.: Association of calcium with membranes of squid giant axon. J. Cell Biol. 61, 156–165 (1974)Google Scholar
  20. Prentø, P.: Histochemistry of neurosecretion in the pars intercerebralis-corpus cardiacum system of the desert locust Schistocerca gregaria. Gen. comp. Endocr. 18, 482–500 (1972)Google Scholar
  21. Russell, J.T., Thorn, N.A.: Adenosine triphosphate dependent calcium uptake by subcellular fractions from bovine neurohypophyses. Acta physiol. scand 93, 364–377 (1975)Google Scholar
  22. Russell, J.T., Thorn, N.A.: Isolation and purification of calcium binding proteins from bovine neurohypophyses. Biochim. biophys. Acta (Amst.) (in press)Google Scholar
  23. Serck-Hanssen, G., Christiansen, E.: Uptake of calcium in chromaffin granules of bovine adrenal medulla stimulated in vitro. Biochim. biophys. Acta (Amst.) 307, 404–415 (1973)Google Scholar
  24. Skaer, R.J., Peters, P.D., Emmines, J.P.: The localization of calcium and phosphorus in human platelets. J. Cell Sci. 15, 679–692 (1974)Google Scholar
  25. Steel, C.G.H., Morris, G.P.: Evidence from X-ray microanalysis of sulphur-rich protein in insect neurosecretion: a new approach to the estimation of neurosecretory activity. Gen. comp. Endocr. 26, 517–524 (1975)Google Scholar
  26. Stone, J.V., Mordue, W., Batley, K.E., Morris, H.R.: Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilisation during flight. Nature (Lond.) 263, 207–211 (1976)Google Scholar
  27. Takaya, K.: Energy dispersive X-ray microanalysis of neurosecretory granules of mouse pituitary on fresh air-dried tissue spreads. Cell Tiss. Res. 159, 227–231 (1975a)Google Scholar
  28. Takaya, K.: Electron probe microanalysis of the dense bodies of human blood platelets. Arch. histol. jap. 37, 335–341 (1975b)Google Scholar
  29. Takaya, K.: Electron microscopy of unstained, fresh air-dried spreads of mouse pancreas acinar cells and energy dispersive X-ray microanalysis of zymogen granules. Cell Tiss. Res. 166, 117–123 (1976)Google Scholar
  30. Thorn, N.A.: Role of calcium in secretory processes. In: Secretory mechanism of exocrine glands (N.A. Thorn and D.H. Petersen, eds.), pp. 305–330. Copenhagen: Munksgaard 1974Google Scholar
  31. Thorn, N.A., Russell, J.T., Vilhardt, H.: Hexosamine, calcium, and neurophysin in secretory granules and the role of calcium in hormone release. Ann. N.Y. Acad. Sci. 248, 202–217 (1975)Google Scholar
  32. Wallach, D., Schramm, M.: Calcium and the exportable protein in rat parotid gland. Parallel subcellular distribution and concomitant secretion. Europ. J. Biochem. 21, 433–437 (1971)Google Scholar
  33. Yarom, R., Hall, T.A., Peters, P.D.: Calcium in myonuclei: Electron probe X-ray analysis. Experientia (Basel) 31, 154–157 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Tom Christian Normann
    • 1
  • Theodore A. Hall
    • 1
  1. 1.Department of ZoologyUniversity of CambridgeCambridgeEngland
  2. 2.Institute of General Zoology, University of CopenhagenCopenhagen ØDenmark

Personalised recommendations