Theoretical and Applied Genetics

, Volume 83, Issue 3, pp 305–312 | Cite as

Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye

  • C. J. Liu
  • M. D. Atkinson
  • C. N. Chinoy
  • K. M. Devos
  • M. D. Gale
Originals

Summary

Genetic maps of wheat chromosome 4A and rye chromosome arm 5RL, and the chromosomal locations of 70 sets of isozyme and molecular homoeoloci have been used to further define the structure of wheat chromosomes 4A, 5A and 7B, and rye chromosomes 4R, 5R and 7R. We provide evidence, for the first time, which is consistent with the presence of an interstitial segment on 4AL originating from 5AL, and of a segment originally from 5RL on 7RS. The evolutionary origins of the present chromosomes are discussed.

Key words

Wheat Rye RFLP Isozymes Evolutionary translocations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth CC, Gale MD, Baird S (1983) The genetics of β-amylase isozymes in wheat. 1. Allelic variation among hexaploid wheat varieties and intrachromosomal gene locations. Theor Appl Genet 66:39–49Google Scholar
  2. Ainsworth CC, Gale MD, Baird S (1984) The genetic control of grain esterases in hexaploid wheat. 1. Allelic variation. Theor Appl Genet 68:219–226Google Scholar
  3. Benito C, Perez de la Vega M (1979) The chromosomal location of peroxidase isozymes of the wheat kernel. Theor Appl Genet 55:73–76Google Scholar
  4. Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504Google Scholar
  5. Cheng C-L, Dewdney J, Kleinhofs A, Goodman HM (1986) Cloning and nitrate induction of nitrate reductase mRNA. Proc Natl Acad Sci USA 83:6825–6828Google Scholar
  6. Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of “Imperial” rye to wheat. Agron Abstr 1971:6Google Scholar
  7. Dvorak J (1988) Cytogenetical and molecular inferences about the evolution of wheat. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp. Institute of Plant Science Research, Cambridge, pp 187–192Google Scholar
  8. Gale MD, Chao S, Sharp PJ (1990) RFLP mapping in wheat — progress and problems. In: Gustafson JP (ed) Gene manipulation in plant improvement II. Plenum, New York, pp 353–364Google Scholar
  9. Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174Google Scholar
  10. Kam-Morgan LNM, Gill BS (1989) DNA restriction fragment length polymorphisms: a strategy for genetic mapping of D genome of wheat. Genome 32:724–732Google Scholar
  11. Kobrehel K, Feillet P (1975) Identification of genomes and chromosomes involved in peroxidase synthesis of wheat seeds. Can J Bot 53:2336–2344Google Scholar
  12. Koebner RMD, Shepherd KW (1986) Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosynthesis. 1. Isolation of recombinants. Theor Appl Genet 73:197–208Google Scholar
  13. Köller OL, Zeller FJ (1976) The homoeologous relationship of rye chromosome 4R and 7R with wheat chromosomes. Genet Res 28:117–188Google Scholar
  14. Liu CJ, Gale MD (1989) Ibf-1 (Iodine binding factor), a highly variable marker system in the Triticeae. Theor Appl Genet 77:233–240Google Scholar
  15. Liu CJ, Gale MD (1991) The chromosomal location of genes encoding NADH dehydrogenase isozymes in hexaploid wheat and related species. Genome 34:44–51Google Scholar
  16. Liu CJ, Chao S, Gale MD (1990) The genetic control of tissuespecific peroxidases, Per-1, Per-2, Per-3, Per-4 and Per-5 in wheat. Theor Appl Genet 79:305–313Google Scholar
  17. McIntosh RA, Hart GE, Gale MD (1990) Catalogue of gene symbols for wheat: Cereal Res Commun [Suppl] 18:141–157Google Scholar
  18. Naranjo T (1982) Preferential occurrence of wheat-rye meiotic pairing between chromosomes of homoeologous group 1. Theor Appl Genet 63:219–225Google Scholar
  19. Naranjo T (1990) Chromosome structure of durum wheat. Theor Appl Genet 79:397–400Google Scholar
  20. Naranjo T, Roca A, Goicoecha PG, Giraldz R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882Google Scholar
  21. Rohde W, Becker D, Salamini F (1988) Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Res 16:7185–7186Google Scholar
  22. Riley R, Chapman C (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715Google Scholar
  23. Schlegel G, Schlegel R (1989) A compendium of reciprocal intervarietal translocations in hexaploid wheat. Kulturpflanz 37:163–176Google Scholar
  24. Sears ER (1954) The aneuploids of common wheat. Agric Exp Stn Res Bull, University of Missouri 572:1–58Google Scholar
  25. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, London, pp 29–45Google Scholar
  26. Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp. Indian Society of Genetics and Plant Breeding, New Delhi, pp 389–407Google Scholar
  27. Sharp PJ, Kries M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290Google Scholar
  28. Wang ML, Atkinson MD, Chinoy CN, Devos KM, Harcourt RL, Liu CJ, Rogers WJ, Gale MD (1991) RFLP-based genetic map of rye (Secale cereale L.) chromosome 1R. Theor Appl Genet 82:174–178Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. J. Liu
    • 1
  • M. D. Atkinson
    • 1
  • C. N. Chinoy
    • 1
  • K. M. Devos
    • 1
  • M. D. Gale
    • 1
  1. 1.Cambridge LaboratoryNorwichUK

Personalised recommendations