Advertisement

Theoretical and Applied Genetics

, Volume 92, Issue 8, pp 952–956 | Cite as

Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera)

  • P. K. Tanhuanpää
  • J. P. Vilkki
  • H. J. Vilkki
Article

Abstract

Bulk segregant analysis was used to search for RAPD (random amplified polymorphic DNA) markers linked to gene(s) affecting oleic acid concentration in an F2 population from the Brassica rapa ssp. oleifera cross Jo4002 x a high oleic acid individual from line Jo4072. Eight primers (=8 markers) out of 104 discriminated the ‘high’ and ‘low’ bulks consisting of extreme individuals from the oleic acid distribution. These markers were analysed throughout the entire F2 population, and their association with oleic acid was studied using both interval mapping and ANOVA analysis. Six of the markers mapped to one linkage group. A quantitative trait locus (QTL) affecting oleic acid concentration was found to reside within this linkage group with a LOD score >15. The most suitable marker for oleic acid content is OPH-17, a codominant marker close (<4cM) to the QTL. The mean seed oleic acid content in the F2 individuals carrying the larger allele of this marker was 80.14±9.76%; in individuals with the smaller allele, 54.53±6.83%; in the heterozygotes, 65.47±8.15%. To increase reproducibility, the RAPD marker was converted into a SCAR (sequence characterized amplied region) marker with specific primers. Marker OPH-17 can be used to select spring turnip rape individuals with the desired oleic acid content.

Keywords

Brassica rapa RAPD SCAR Bulked segregant analysis QTL Oleic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appelqvist L.-Å (1968) Lipids in Cruciferae. III. Fatty acid composition of diploid and tetraploid seeds of Brassica campestris and Sinapis alba grown under two climatic extremes. Physiol Plant 21:615–625Google Scholar
  2. Appelqvist L-Å (1971) Lipids in Cruciferae. IX. The effect of growth temperature and stage of development on the fatty acid composition of leaves siliques and seeds of zero-erucic acid breeding lines of Brassica napus. Physiol Plant 25:493–502Google Scholar
  3. Chen JL, Beversdorf WD (1990) Fatty acid inheritance in microspore-derived populations of spring rapeseed (Brassica napus L.). Theor Appl Genet 80:465–469Google Scholar
  4. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Rep 1:19–21Google Scholar
  5. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349Google Scholar
  6. Hal JG van, Baarsel HM (1974) Influence of temperature and daylight on the fatty acid composition of summer rapeseed (Brassica napus). In: Proc 4th Int Rapeseed Conf., GCIRC, Giessen, pp 243–248Google Scholar
  7. Jönsson R (1975) Förädling för förbättrad fettsyrasammansättning i oljeväxter. II. Undersökning rörande vissa miljöfaktorers inverkan på fettsyramönstret i höstraps (Brassica napus L. var ‘biennis’ L.). Sver Utsädesför Tidskr 85:9–18Google Scholar
  8. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181Google Scholar
  9. Michelmore RW, Paran I, Kesseli, RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Genetics 88:9828–9832Google Scholar
  10. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993Google Scholar
  11. Tanhuanpää PK, Vilkki HJ, Vilkki JP, Pulli SK (1993) Genetic polymorphism at RAPD loci in spring turnip rape (Brassica rapa ssp. oleifera). Agric Sci Finl 2:303–310Google Scholar
  12. Tanhuanpää PK, Vilkki JP, Vilkki HJ (1995a) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome 38:414–416Google Scholar
  13. Tanhuanpää PK, Vilkki JP, Vilkki HJ (1995b) Identification of a RAPD marker for palmitic acid concentration in the seed oil of spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet 91:477–480Google Scholar
  14. Teutonico RA, Osborn TC (1995) Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89:885–894Google Scholar
  15. Thies W (1968) Die Biogenese von Linol- und Linolensäure in den Samen höherer Pflanzen, insbesondere Raps und Rübsen, als Problem der Ölpflanzenzüchtung. Angew Bot 42:140–154Google Scholar
  16. Thompson KF (1983) Breeding winter oilseed rape, Brassica napus. Adv Appl Biol 7:1–104Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. K. Tanhuanpää
    • 1
  • J. P. Vilkki
    • 2
  • H. J. Vilkki
    • 3
  1. 1.Agricultural Research Centre of FinlandPlant Breeding Section, Institute of Crop and Soil ScienceJokioinenFinland
  2. 2.Boreal Plant BreedingJokioinenFinland
  3. 3.Agricultural Research Centre of FinlandAnimal Breeding, Institute of Animal ProductionJokioinenFinland

Personalised recommendations