Theoretical and Applied Genetics

, Volume 87, Issue 1–2, pp 81–88 | Cite as

Chloroplast and mitochondrial DNA diversity in Theobroma cacao

  • V. Laurent
  • A. M. Risterucci
  • C. Lanaud
Article

Abstract

The variability of cocoa (Theobroma cacao) cytoplasmic genomes has been investigated. A total of 177 cocoa clones was surveyed for restriction fragment length polymorphism (RFLP) in chloroplast DNA and in mitochondrial DNA using two restriction endonucleases and various heterologous cytoplasmic probes. A high level of polymorphism was found for the mitochondrial genome. This study points up a structuring of the species that fits with the distinction between the Criollo and Forastero populations. In contrast to all previous analyses, a higher level of polymorphism is found among the Criollo clones while the Forastero clones form quite a homogeneous group.

Key words

Theobroma cacao RFLP Mitochondrial genome Chloroplast genome Diversity study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks JA, Birky WJ (1985) Chloroplast DNA diversity is low in a wild plant, Lupinus texensis. Proc Natl Acad Sci USA 82:6950–6954Google Scholar
  2. Benzecri JP (1973) L'analyse des données. 2. l'analyse des correspondances. Dunod, ParisGoogle Scholar
  3. Breiman A (1987) Mitochondrial DNA diversity in the genera of Triticum and Aegilops revealed by Southern-blot hybridization. Theor Appl Genet 73:563–570Google Scholar
  4. Cheesman EE (1944) Notes on the nomenclature, classification and possible relationships of cocoa populations. Trop Agric 2:144–159Google Scholar
  5. Cuatrecasas J (1964) Cacao and its allies: a taxonomic revision of the genus Theobroma. Bull US National Museum, Smithsonian Institution, Washington 35:379–614Google Scholar
  6. D'Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugar Cane 1:12–15Google Scholar
  7. Enriquez GA (1992) Characteristics of cacao “National” of Ecuador. Int Wkshp on Conservation, Characterisation and Utilisation of Cocoa Genetic Resources in the 21st century. CRU, TrinidadGoogle Scholar
  8. Falconet D, Lejeune B, Quetier F, Gray W (1984) Evidence for homologous recombination between repeated sequences containing 18s and 5s ribosomal RNA genes in wheat mitochondrial DNA. EMBO J 3:297–302Google Scholar
  9. Falconet D, Delorme S, Lejenue B, Sévignac M, Delcher E, Bazetoux S, Quétier F (1985) Wheat mitochondrial 26s ribosomal RNA gene has no intron and is present in multiple copies arising by recombination. Curr Genet 9:169–174Google Scholar
  10. Holwerda BC, Jana S, Crosby WL (1986) Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum. Genetics 114:1271–1291Google Scholar
  11. Kano A, Hiraï A (1992) Comparative studies of the structure of chloroplast DNA from four species of Oryza: cloning and physical maps. Theor Appl Genet 83:791–798Google Scholar
  12. Kung SD, Zhu SY, Shen GF (1982) Nicotiana chloroplast genome. 3. Chloroplast DNA evolution. Theor Appl Genet 61:73–79Google Scholar
  13. Lanaud C (1987) Nouvelles données sur la biologie du cacaoyer (Theobroma cacao L.): diversité des populations, système d'incompatibilité, haploides spontanés. Leurs conséquences pour l'amélioration génétique de cette espèce. PhD thesis, Paris, FranceGoogle Scholar
  14. Laurent V, Risterucci AM, Lanaud C (1993) Variability for nuclear ribosomal genes within Theobroma cacao. Heredity 71:96–103Google Scholar
  15. Lejeune B, Quetier F, Jubier MF, Falconet DAR, Hartmann C (1988) Le génome mitochondrial des plantes supérieurs: organisation moléculaire et expression. Bull Soc bot Fr 135:49–55Google Scholar
  16. Makaroff CA, Palmer JD (1987) Extensive mitochondrial specific transcription of Brassica campestris mitochondrial genome. Nucleic Acids Res 15:5141–5156Google Scholar
  17. Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85:8573–8577Google Scholar
  18. Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130:S6-S9CrossRefGoogle Scholar
  19. Palmer JD, Jorgensen RA, Thomson WF (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109:195–213Google Scholar
  20. Polans NO, Corriveau JL, Coleman AW (1990) Plastid inheritance in Pisum sativum L. Curr Genet 18:477–480Google Scholar
  21. Recipon H (1989) Contribution à l'étude des gènes mitochondriaux codant pour des sous unités du complexe ATP synthase dans un couple isogenique male-fertile male-sterile de tournesol (Helianthus annus L.). PhD thesis, Paris, FranceGoogle Scholar
  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring, Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  23. Soria JV (1970) Principal varieties of cocoa cultivated in tropical America. Cocoa Growers' Bull 19:12–21Google Scholar
  24. Steane DA, West AK, Potts BM, Ovenden JR, Reid JB (1991) Restriction fragment length polymorphisms in chloroplast DNA from six species of Eucalyptus. Aust J Bot 39:399–414Google Scholar
  25. Teeri TH, Saura A, Lokki J (1985) Insertion polymorphism in pea chloroplast DNA. Theor Appl Genet 69:567–570Google Scholar
  26. White EE (1990) Chloroplast DNA in Pinus monticula. 2. Survey of within-species variability and detection of heteroplasmic individuals. Theor Appl Genet 79:251–255Google Scholar
  27. Willey DL, Auffret AD, Gray JC (1984) Structure and topology of cytochrome f in pea chloroplast membranes. Cell 36:555–562Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • V. Laurent
    • 1
  • A. M. Risterucci
    • 1
  • C. Lanaud
    • 1
  1. 1.CIRAD-CP, BIOTROPMontpellier cedexFrance

Personalised recommendations