Molecular and Cellular Biochemistry

, Volume 76, Issue 2, pp 141–146 | Cite as

Involvement of lysine and arginine residues in the binding of yeast ribosomal protein YL3 to 5S RNA

  • Agustín Vioque
  • Francisco Hernández
  • Enrique Palacián
Original Article

Abstract

The contribution of lysine and arginine residues to the formation of yeast ribonucleoprotein complex 5S RNA. protein YL3 has been investigated by determining the effects on complex formation of modification with chemical reagents specific for either lysine or arginine. Treatment of protein YL3 with acetic anhydride, malefic anhydride or phenylglyoxal is accompanied by loss of its capacity to bind to 5S RNA. This effect is accomplished by modification with phenylglyoxal of only 3 arginine residues per YL3 molecule. In contrast, a large number of protein YL3 amino groups [16] must be modified by acetic anhydride to prevent complex formation.

Key words

ribosomal protein YL3 5S RNA lysine residues arginine residues yeast ribosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Monier R. In: Ribosomes. Nomura M, Tissières A and Lengyel P (eds), Cold Spring Harbor Laboratory, 1974, pp 141–168Google Scholar
  2. 2.
    Erdmann VA: Progr Nucleic Acids Res Mol Biol 18, 45–90, 1976Google Scholar
  3. 3.
    Nazar RN, Yaguchi M, Willick GE: Can J Biochem 60, 490–496, 1982Google Scholar
  4. 4.
    Nazar RN, Yaguchi M, Willick GE, Rollin CF, Roy C: Eur J Biochem 102, 573–582, 1979Google Scholar
  5. 5.
    Yaguchi M, Rollin CF, Roy C, Nazar RN: Eur J Biochem 139, 451–457, 1984Google Scholar
  6. 6.
    Sánchez-Madrid F, Ballesta JPG: Biochem Biophys Res Commun 91, 643–650, 1979Google Scholar
  7. 7.
    Laemmli UK: Nature 227, 680–685, 1970PubMedGoogle Scholar
  8. 8.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: J Biol Chem 193, 264–275, 1951Google Scholar
  9. 9.
    Peattie DA: Proc Natl Acad Sci USA 76, 1760–1764, 1979Google Scholar
  10. 10.
    Nazar RN, Matheson AT: J Biol Chem 252, 4256–4261, 1977Google Scholar
  11. 11.
    Nazar RN, Wildeman AG: Nucleic Acids Res 11, 3155–3168, 1983Google Scholar
  12. 12.
    Pintor-Toro JA, Hernández F, López-Rivas A, Palacián E: Arch Biochem Biophys 210, 786–789, 1981Google Scholar
  13. 13.
    Hernández F, López-Rivas A, Pintor-Toro JA, Palacián E: Eur J Biochem 108, 137–141, 1980Google Scholar
  14. 14.
    Nieto MA, Palacián E: Biochim Biophys Acta 749, 204–210, 1983Google Scholar
  15. 15.
    Vioque A, Hernández F, Palacián E: Molec Biol Rep 11, 47–50, 1986Google Scholar
  16. 16.
    Riordan JF: Molec Cell Biochem 26, 71–92, 1979Google Scholar
  17. 17.
    Cotton FA, Day VW, Hazen EE, Larsen S: J Amer Chem Soc 95, 4834–4840, 1973Google Scholar
  18. 18.
    Wagner KG, Arfmann H-A: Eur J Biochem 46,27–34,1974Google Scholar
  19. 19.
    Willick GE, Nazar RN, Van NT: Biochemistry 19, 2738–2742, 1980Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1987

Authors and Affiliations

  • Agustín Vioque
    • 1
  • Francisco Hernández
    • 1
  • Enrique Palacián
    • 1
  1. 1.Centro de Biología MolecularConsejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadridSpain

Personalised recommendations