Advertisement

Experiments in Fluids

, Volume 13, Issue 6, pp 369–376 | Cite as

Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence

  • A. Lozano
  • B. Yip
  • R. K. Hanson
Originals

Abstract

This paper explores the use of acetone as a suitable tracer in planar laser-induced fluorescence concentration measurements in gaseous flows. The photophysics and physical properties of acetone relevant to its use as a fluorescent marker are discussed and compared to those of alternative molecular tracers, particularly the biacetyl molecule. Finally, as a direct example, concentration images obtained in a turbulent air jet seeded alternatively with acetone and biacetyl are compared.

Keywords

Acetone Gaseous Flow Concentration Measurement Fluorescent Marker Concentration Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almy, G. M.; Anderson, S. 1940: Lifetime of fluorescence in diacetyl and acetone. J. Chem. Phys. 8, 805–814Google Scholar
  2. Ambrose, D.; Sprake, C. H. S.; Townsend, R. 1974: Thermodynamic properties of organic oxygen compounds XXXIII. The vapour pressure of acetone. J. Chem. Thermodyn. 6, 693–700Google Scholar
  3. Arnold, A.; Becker, H.; Suntz, R.; Monkhouse, P.; Wolfrum, J.; Maly, R.; Pfister, W. 1990: Flame front imaging in an internal-combustion engine simulator by laser-induced fluorescence of acetaldehyde. Opt. Lett. 15 (15), 831–833Google Scholar
  4. Bowers, P. G.; Porter, G. B. 1964: Fluorescence and phosphorescence of hexafluoroacetone vapor. J. Phys. Chem. 68 (10), 2982–2985Google Scholar
  5. Breuer, G. M.; Lee, E. K. C. 1971: Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase. J. Phys. Chem. 75 (7), 989–990Google Scholar
  6. Calvert, J. G.; Pitts, J. N. 1966: Photochemistry. New York: WileyGoogle Scholar
  7. Cruyningen, I. van; Lozano, A.; Hanson, R. K. 1990: Quantitative imaging of concentration by planar laser-induced fluorescence. Exp. Fluids 10 (1), 41–49Google Scholar
  8. Damon, G. H.; Daniels, F. 1933: The photolysis of gaseous acetone and the influence of water. J. Am. Chem. Soc. 55, 2363–2375Google Scholar
  9. Dyer, M. J.; Crosley, D. R. 1982: Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 7 (8), 382–384Google Scholar
  10. Epstein, A. H. 1974: Fluorescent gaseous tracers for three-dimensional flow visualization. MIT Gas Turbine Lab. Rep. 117Google Scholar
  11. Gandini, A. A.; Kutschke, K. O. 1968: The primary process in the photolysis of hexafluoroacetone vapour II. The fluorescence and phosphorescence. Proc. R. Soc. London, Ser. A, 306, 511–528Google Scholar
  12. Halpern, A. M.; Ware, W. R. 1971: Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoroacetone in the gas phase, in solution, and in the neat liquid. J. Chem. Phys. 54 (3), 1271–1276Google Scholar
  13. Hansen, D. A.; Lee, E. K. C. 1975a: Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones. J. Chem. Phys. 62 (1), 183–189Google Scholar
  14. Hansen, D. A., Lee, E. K. C. 1975b: Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes. J. Chem. Phys. 62 (1), 3272–3277Google Scholar
  15. Hanson, R. K.; Seitzman, J. M.; Paul, P. H. 1990: Planar laser-fluorescence imaging of combustion gases. Appl. Phys. B, 50, 441–454Google Scholar
  16. Heicklen, J. 1959: The fluorescence and phosphorescence of biacetyl vapor and acetone vapor. J. Am. Chem. Soc. 81, 3863–3866Google Scholar
  17. Heicklen, J.; Noyes, W. A. 1959: The photolysis and fluorescence of acetone and acetone-biacetyl mixtures. J. Am. Chem. Soc. 81, 3858–3863Google Scholar
  18. Hiller, B.; Hanson, R. K. 1988: Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Appl. Opt. 27, 33–48Google Scholar
  19. Hiller, B.; Hanson, R. K. 1990: Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows. Exp. Fluids 10, 1–11Google Scholar
  20. Hunt, R. E.; Noyes, W. A. 1948: Photochemical studies XXXIX. A further study of the fluorescence of acetone. J. Am. Chem. Soc. 70, 467–476Google Scholar
  21. Kaskan, W. E.; Duncan, B. F. 1950: Mean lifetime of the fluorescence of acetone and biacetyl vapors. J. Chem. Phys. 18 (4), 427–431Google Scholar
  22. Kychakoff, G.; Howe, R. D.; Hanson, R. K.; McDaniel, J. C. 1982: Quantitative visualization of combustion species in a plane. Appl. Opt. 21, 3225–3227Google Scholar
  23. Lee, M. P.; Paul, P. H.; Hanson, R. K. 1987: Quantitative imaging of temperature fields in air using planar laser-induced fluorescence. Opt. Lett. 12, 75–77Google Scholar
  24. Liu, J. B.; Pan, Q.; Liu, C. S.; Shi, J. R. 1988: Principles of flow field diagnostics by laser-induced biacetyl phosphorescence. Exp. Fluids 6, 505–513Google Scholar
  25. Matheson, M. S.; Zabor, J. W. 1939: Fluorescence of carbonyl compounds in the gas phase. J. Chem. Phys. 7, 536–538Google Scholar
  26. Okabe, H.; Noyes, W. A. 1957: The relative intensities of fluorescence and phosphorescence in biacetyl vapor. J. Am. Chem. Soc. 79, 801–806Google Scholar
  27. Okabe, H.; Steacie, W. R. 1958: The fluorescence and its relationship to photolysis in hexafluoroacetone vapor. Can. J. Chem. 36, 137–146Google Scholar
  28. Parmenter, C. S.; Noyes, W. A. 1962: Energy dissipation from excited acetaldehyde molecules. J. Am. Chem. Soc. 85, 416–421Google Scholar
  29. Seitzman, J. M.; Kychakoff, G.; Hanson, R. K. 1985: Temperature field measurements in combustion gases using planar-laser induced fluorescence. Opt. Lett. 10, 439–441Google Scholar
  30. Sidebottom, H. W.; Badcock, C. C.; Calvert, J. G.; Rabe, B. R.; Damon, E. K. 1972: Lifetime studies of the biacetyl excited singlet and triplet states in the gas phase at 25°. J. Am. Chem. Soc. 94, 13–19Google Scholar
  31. Yip, B.; Schmitt, R. L.; Long, M. B. 1988: Instantaneous three-dimensional concentration measurements in turbulent jets and flames. Opt. Lett. 13, 96–98Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Lozano
    • 1
  • B. Yip
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations