Cell and Tissue Research

, Volume 258, Issue 1, pp 163–175 | Cite as

Anatomical and physiological observations on the organization of mechanoreceptors and local interneurons in the central nervous system of the wandering spider Cupiennius salei

  • Wulfila Gronenberg
Article

Summary

In the wandering spider Cupiennius salei, the functional neuroanatomy of leg mechanosensory receptor neurons and interneurons associated with a single leg neumere was investigated by combined intracellular recording and Lucifer yellow ionophoresis. Trichobothria axons that selectively respond to air currents and to low-frequency airborne vibrations have arborizations restricted to ventral regions of the appropriate leg neuromere. Receptor afferents that respond selectively to substrateborne vibrations are distributed ventrally in the corresponding leg neuromere and extend into certain interganglionic tract neuropiles. Golgi impregnation and intracellular dye filling show that local interneurons originate in ventral sensory neuropiles of leg neuromeres and ascend dorsally to terminate amongst dendrites of motor neurons. Local interneurons generally show higher thresholds for vibration stimuli than do receptors. Local interneurons typically receive inputs from one or several types of receptors. Some respond to stimulation of a single leg, others respond to stimulation of several legs on the same side of the body. The functional morphology of the receptor afferents is correlated with known physiological characteristics of slit sensilla and trichobothria. Structure and activity of the local interneurons are compared with analogous interneurons in other arthropods.

Key words

Neuroanatomy Intracellular recording Mechanosensitivity Spider central nervous system Cupiennius salei (Chelicerata) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104:344–359Google Scholar
  2. Babu KS, Barth FG (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei Keys. Cell Tissue Res (to appear)Google Scholar
  3. Babu KS, Barth FG, Strausfeld NJ (1985) Intersegmental sensory tracts and contralateral motor neurons in the leg ganglia of the spider Cupiennius salei Keys. Cell Tissue Res 241:53–57Google Scholar
  4. Bacon JP, Murphey RK (1984) Receptive fields of the cricket giant interneurons are related to their dendritic structure. J Physiol 352:601–623Google Scholar
  5. Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:407–449Google Scholar
  6. Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt P, Rovner JS (eds) Spider communication, mechanisms and ecological significance. Princeton University Press, Princeton, NY, pp 67–120Google Scholar
  7. Barth FG (1985) Neuroethology of the spider vibration sense. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York Tokyo, pp 203–229Google Scholar
  8. Barth FG, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol [A] 148:175–185Google Scholar
  9. Bodian D (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat Rec 69:89–97Google Scholar
  10. Bräunig P, Hustert R, Pflüger HJ (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locust. I. Morphology, location and innervation of internal proprioceptors of pro- and metathorax and their central projections. Cell Tissue Res 216:56–77Google Scholar
  11. Burrows M, Pflüger H-J (1986) Processing by local interneurons of mechanosensory signals involved in a leg reflex of the locust. J Neurosci 6:2764–2777Google Scholar
  12. Dahl F (1883) Über die Hörhaare bei den Arachnoiden. Zool Anz 6:267–270Google Scholar
  13. Eckweiler W, Seyfarth E-A (1988) Tactile hairs and the adjustment of body height in wandering spiders: behavior, leg reflexes, and afferent projections in the leg ganglia. J Comp Physiol [A] 162:611–621Google Scholar
  14. Eibl E, Huber F (1979) Central projections of tibial sensory fibres within the three thoracic ganglia of crickets (Gryllus campestris L., Gryllus bimaculatus de Geer). Zoomorphologie 92:1–17Google Scholar
  15. Görner P, Andrews P (1969) Trichobothrien, ein Ferntastsinnesorgan bei Webespinnen (Araneen). Z Vergl Physiol 64:301–317Google Scholar
  16. Gregory GE (1980) The Bodian protargol technique. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Springer, Berlin, Heidelberg New York, pp 75–95Google Scholar
  17. Gronenberg W (1987) Neuronal elements in the CNS of a spider (Cupiennius salei): anatomy and physiology. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research. Thieme, Stuttgart New York, p 78Google Scholar
  18. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin Heidelberg New York, pp 392–407Google Scholar
  19. Hustert R (1978) Segmental and interganglionic projections from primary fibers of insect mechanoreceptors. Cell Tissue Res 194:337–351Google Scholar
  20. Hustert R, Pflüger HJ, Bräunig P (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. III. The external mechanoreceptors: the campaniform sensilla. Cell Tissue Res 216:97–111Google Scholar
  21. Kondoh Y, Hisada M (1986) Distribution and ultrastructure of synapses on a premotor local nonspiking interneuron of the crayfish. J Comp Neurol 254:259–270Google Scholar
  22. Liesenfeld FJ (1961) Über Leistung und Sitz des Erschütterungssinnes von Netzspinnen. Biol Zentralbl 80:465–475Google Scholar
  23. Linsenmair KE (1968) Anemomenotaktische Orientierung bei Skorpionen (Chelicerata, Scorpiones). Z Vergl Physiol 60:445–449Google Scholar
  24. Markl H (1973) Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschr Zool 21:100–120Google Scholar
  25. Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J Comp Physiol [A] 99:79–87Google Scholar
  26. Milde J, Seyfarth E-A (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol [A] 162:623–633Google Scholar
  27. Palka J, Levine R, Schubiger M (1977) The cercus-to-giant interneuron system of crickets. I. Some attributes of the sensory cells. J Comp Physiol [A] 119:267–283Google Scholar
  28. Pflüger H-J, Tautz J (1982) Air movements sensitive hairs and interneurons in Locusta migratoria. J Comp Physiol [A] 145:369–380Google Scholar
  29. Pflüger HJ, Bräunig P, Hustert R (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. II. The external mechanoreceptors: hair plates and tactile hairs. Cell Tissue Res 216:79–96Google Scholar
  30. Reichert H, Plummer MR, Wine JJ (1983) Identified nonspiking local interneurons mediate nonrecurrent, lateral inhibition of crayfish mechanosensory interneurons. J Comp Physiol [A] 151:261–276Google Scholar
  31. Reissland A (1978) Electrophysiology of trichobothria in orbweaving spiders (Agelenidae, Araneae). J Comp Physiol [A] 123:71–84Google Scholar
  32. Reissland A, Görner P (1978) Mechanics of trichobothria in orbweaving spiders (Agelenidae, Araneae). J Comp Physiol [A] 123:59–69Google Scholar
  33. Reissland A, Görner P (1985) Trichobothria. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York Tokyo, pp 138–161Google Scholar
  34. Ribi WA (1983) Electron microscopy of Golgi-impregnated neurons. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 1–18Google Scholar
  35. Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol [A] 155:249–262Google Scholar
  36. Shimozawa T, Kanou M (1984) Varieties of filiform hairs: range fractionation by sensory afferents and cereal interneurons of a cricket. J Comp Physiol [A] 155:485–493Google Scholar
  37. Siegler MVS, Burrows M (1983) Spiking local interneurons as primary integrators of mechanosensory information in the locust. J Neurophysiol 50:1281–1295Google Scholar
  38. Siegler MVS, Burrows M (1984) The morphology of two groups of spiking local interneurons in the metathoracic ganglion of the locust. J Comp Neurol 224:463–482Google Scholar
  39. Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol [A] 148:187–194Google Scholar
  40. Speck-Hergenröder J, Barth FG (1987) Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. J Comp Physiol [A] 160:467–475Google Scholar
  41. Spurr AR (1969) A low viscosity epoxyresin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedGoogle Scholar
  42. Tobias M, Murphey RK (1979) The response of cereal receptors and identified interneurons in the cricket (Acheta domesticus) to air currents. J Comp Physiol [A] 129:51–59Google Scholar
  43. Tyrer NM, Bacon JP, Davies CA (1979) Sensory projections from the wind-sensitive head hairs of the locust Schistocerca gregaria. I. Distribution in the central nervous system. Cell Tissue Res 203:79–92Google Scholar
  44. Watson AHD, Burrows M (1982) The ultrastructure of identified motor neurones and their synaptic relationships. J Comp Neurol 205:383–347Google Scholar
  45. Watson AHD, Burrows M (1983) The morphology, ultrastructure, and distribution of synapses on an intersegmental interneuron of the locust. J Comp Neurol 214:154–169Google Scholar
  46. Watson AHD, Burrows M (1985) The distribution of synapses on the two fields of neurites of spiking local interneurons in the locust. J Comp Neurol 240:219–232Google Scholar
  47. Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus de Geer). J Comp Physiol [A] 127:11–28Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Wulfila Gronenberg
    • 1
  1. 1.Gruppe SinnesphysiologieZoologisches Institut der J.W. Goethe-UniversitätFrankfurtGermany

Personalised recommendations