Interface Science

, Volume 2, Issue 4, pp 365–377 | Cite as

On the use of scanning tunneling microscopy to investigate surface structure and interface formation in transition metal oxides: SrTiO3 and TiO2

  • D. A. Bonnell
  • Y. Liang
  • D. L. Carroll


Since transition metal oxides are wide bandgap, low conductivity materials compared to conventional semiconductors, surface analysis by scanning tunneling microscopy (STM) is expected to be problematic. This paper considers the factors that affect atomic scale imaging of transition metal oxides and demonstrates how STM can be exploited to examine the geometric and electronic structures of SrTiO3 and TiO2 surfaces, their variations with thermochemical history, and the mechanisms of metal/oxide interface formation. The development of periodic atomic scale surface structure with variations in surface compositions are documented for both oxides. Further, the interactions of these surfaces with metal are examined by characterizing the morphologies that develop upon deposition of Cu on SrTiO3 and Al on TiO2.


scanning tunneling microscopy STM SrTiO3 TiO2 interfaces metal deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.E.Henrich and P.A.Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, UK, 1994).Google Scholar
  2. 2.
    D.A.Bonnell, ed., Scanning Tunneling Microscopy: Theory, Techniques, and Applications (VCH, Pub. NY, 1993).Google Scholar
  3. 3.
    G.S.Rohrer, V.Henrich, and D.A.Bonnell, Science 250, 1239 (1991).Google Scholar
  4. 4.
    Y. Liang and D. Bonnell, Surf. Sci. Lett. 285, L510 (1993).Google Scholar
  5. 5.
    D.A.Bonnell, Ceramic Transactions 5, 315 (1989).Google Scholar
  6. 6.
    Q.Zhong, J.Vohs, and D.Bonnell, Surf. Sci. 274, 35 (1992).Google Scholar
  7. 7.
    F.Flores and N.Garcia, Phys. Rev. B 30, 2289 (1984).Google Scholar
  8. 8.
    P.Murray, F.Leibsle, H.Fischer, C.Flipse, C.Muryn, and G.Thornton, Phys. Rev. B 46, 12877–12879 (1992).Google Scholar
  9. 9.
    T. Matsumoto, H. Tanaka, T. Kawai, and S. Kawai, Surf. Sci. 278, L153 (1992).Google Scholar
  10. 10.
    W.Lu, M.Norton, and G.Rohrer, Surf. Sci. 291, 395 (1993).Google Scholar
  11. 11.
    M. Sander and T. Engle, Surf. Sci. Lett. 302, L263 (1994).Google Scholar
  12. 12.
    T.Oshio, Y.Sakai, and T.Moriya, Ultra Mic. 42, 744–748 (1992).Google Scholar
  13. 13.
    P.Thibado, G.Rohrer, and D.Bonnell, Surf. Sci., 318, 379 (1994).Google Scholar
  14. 14.
    D.A.Bonnell and D.R.Clarke, J. Am. Cer. Soc. 71, 629 (1988).Google Scholar
  15. 15.
    S.Ruddleson and P.Popper, Acta Crystal, 11, 54 (1958).Google Scholar
  16. 16.
    Y.Liang and D.Bonnell, Surf. Sci. 310, 128 (1994).Google Scholar
  17. 17.
    Y. Liang, B. Rothman, and D. Bonnell, J. Vac. Sci. 13, (1994).Google Scholar
  18. 18.
    U.Diebold, J.M.Pan, and T.E.Madey, Phys. Rev. B 47, 386 (1993).Google Scholar
  19. 19.
    Z.Zhang and V.E.Henrich, Surf. Sci. 277, 263 (1992).Google Scholar
  20. 20.
    M. Gautier, J. Duraud, and L. Van, Surf. Sci. 278, L153 (1992).Google Scholar
  21. 21.
    See ref. 1 chapter 7 for a complete list.Google Scholar
  22. 22.
    Y. Liang, D. Carroll, and D. Bonnell, Proc. of Mat. Res. Soc. (1994).Google Scholar
  23. 23.
    D.Carroll, Y.Liang, and D.Bonnell, J. Vac. Sci. and Tech. 13, 2298 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • D. A. Bonnell
    • 1
  • Y. Liang
    • 1
  • D. L. Carroll
    • 1
  1. 1.Department of Materials Science and EngineeringThe University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations