Cell and Tissue Research

, Volume 191, Issue 2, pp 317–331 | Cite as

Fine structure of degenerating abdominal motor neurons after eclosion in the sphingid moth, Manduca sexta

  • Reinhard F. Stocker
  • John S. Edwards
  • James W. Truman


Ultrastructural aspects of the natural degeneration of a group of six motor neurons in the fourth abdominal ganglion of Manduca sexta are described. These motor neurons innervate intersegmental muscles that degenerate and disappear immediately after adult eclosion. The first detectable changes in the cell bodies appear 12 h after eclosion and include disruption of the endoplasmic reticulum and an increase in the size and number of lamellar bodies. At 32 h the nuclear membranes rupture, and the membranous and granular cytoorganelles segregate in different parts of the cell. At that stage the surrounding glial cells participate in the digestion of material from the degenerating neurons. From 72 h onward the remaining neuronal structures become disrupted, and are finally transformed into a single, large lamellar body (residual body) within the glial profile. The degeneration pattern differs significantly from that of embryonic vertebrate neurons.

Key words

Programmed cell death Motor neurons Neuro-glial interaction Ultrastructure Manduca (Lepidoptera) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C.A., Westrum, L.E.: An electron microscopic study of the normal synaptic relationships and early degenerative changes in the rat olfactory tubercle. Z. Zellforsch. 127, 462–482 (1972)Google Scholar
  2. DeDuve, C.: Structure and functions of lysosomes. In: Funktion und morphologische Organisation der Zelle (P. Karlson, ed.). Berlin-Heidelberg-New York: Springer 1963Google Scholar
  3. Edwards, J.S.: The composition of an insect sensory nerve, the cereal nerve of the house cricket Acheta domesticus. Proc. Electron Micr. Soc. Amer. 17, 248–249 (1971)Google Scholar
  4. Finlayson, L.H.: Normal and induced degeneration of abdominal muscles during metamorphosis in the Lepidoptera. Quart. J. micr. Sci. 97, 215–233 (1956)Google Scholar
  5. Lamparter, H.E., Akert, K., Sandri, C.: Wallersche Degeneration im Zentralnervensystem der Ameise. Elektronenmikroskopische Untersuchungen am Prothorakalganglion vom Formica lugubris Zett. Schweiz. Arch. Neurol. Psychiat. 100, 337–354 (1967)Google Scholar
  6. Lockshin, R.A., Beaulaton, J.: Programmed cell death. Life Sci. 15, 1549–1565 (1974)Google Scholar
  7. Lockshin, R.A., Williams, C.M.: Programmed cell death. I. Histology and cytology of the breakdown of the intersegmental muscles in saturniid moths. J. Insect Physiol. 11, 123–133 (1965)Google Scholar
  8. Nüesch, H., Stocker, R.F.: Ultrastructural studies on neuromuscular contacts and the formation of junctions in the flight muscle of Antheraea polyphemus (Lep.). II. Changes after motor nerve section. Cell. Tiss. Res. 164, 331–355 (1975)Google Scholar
  9. O'Connor, Th.M., Wyttenbach, Ch.R.: Cell death in the embryonic chick spinal cord. J. Cell Biol. 60, 448–459 (1974)Google Scholar
  10. Rees, D., Usherwood, P.N.R.: Fine structure of normal and degenerating motor axons and nerve-muscle synapses in the locust, Schistocerca gregaria. Comp. Biochem. Physiol. 43A, 83–101 (1972)Google Scholar
  11. Reynolds, E.S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  12. Reynolds, S.E., Taghert, P.H., Truman, J.W.: Eclosion hormone and bursicon titres and the onset of hormonal responsiveness during the last day of adult development in Manduca sexta (L). Submitted for publication (1978)Google Scholar
  13. Richardson, K.C., Jarett, I., Finke, E.H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960)Google Scholar
  14. Smith, D.S.: Insect cells. Their structure and function. Edinburgh: Oliver and Boyd 1968Google Scholar
  15. Spencer, P.S., Thomas, P.K.: Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons. J. Neurocytol. 3, 763–783 (1974)PubMedGoogle Scholar
  16. Stocker, R.F. : Analysis of a peripheral nerve in the leg-like antenna of Antennapedia, a homeotic mutant in Drosophila (in preparation)Google Scholar
  17. Taylor, H.M., Truman, J.W.: Metamorphosis of the abdominal ganglia of the tobacco hornworm, Manduca sexta. Changes in populations of identified motor neurons. J. comp. Physiol. 90, 367–383 (1974)Google Scholar
  18. Truman, J.W.: The eclosion hormone: Its release by the brain and its action on the central nervous system of silkmoths. Amer. Zool. 10, 511–512 (1970)Google Scholar
  19. Truman, J.W.: Physiology of insect rhythms. I. Circadian organization of the endocrine events underlying the moulting cycle of larval tobacco hornworms. J. exp. Biol. 57, 805–820 (1972)Google Scholar
  20. Truman, J. W.: How moths “turn on” : A study of the action of hormones on the nervous system. Amer. Sci. 61, 700–706 (1973)Google Scholar
  21. Tung, A.S.-C., Pipa, R.L.: Fine structure of transected interganglionic connectives and degenerating axons of wax moth larvae. J. Ultrastr. Res. 36, 694–707 (1971)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Reinhard F. Stocker
    • 1
  • John S. Edwards
    • 1
  • James W. Truman
    • 1
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA

Personalised recommendations