Cell and Tissue Research

, Volume 175, Issue 4, pp 499–522

Structural correlates of function in the “opercularis” muscle of amphibians

  • Robert P. Becker
  • R. Eric Lombard


This study characterizes the fine structure of the “opercularis” muscles of selected frogs and salamanders (Genera: Hyla; Desmognathus; Ambystoma). The “opercularis” muscle originates on the shoulder girdle and inserts on the opercular plate in the fenestra ovalis of the otic capsule. Each of the three genera used exhibits one of the major gross dispositions of this muscle found in amphibians. In each case the “opercularis” muscle contains large numbers of tonic fibers: 80% in Hyla; 90% in Desmognathus; 45% in Ambystoma. These fibers correspond to the class-5 tonic fibers of Smith and Ovalle (1973). The remainder of the fibers in the “opercularis” correspond to those in the class-3 “phasic” of Smith and Ovalle. The muscle from which the “opercularis” is derived (levator scapulae in Hyla, cucullaris in Desmognathus) is comprised of fibers which correspond to the class-2 phasic fibers of Smith and Ovalle.

The fiber composition of the “opercularis” indicates that it is constructed to sustain contraction over long periods of time. This composition is supportive of the functional role in audition proposed for the muscle by Lombard and Straughan (1974). Evidence is presented that indicates that fiber size may be body size dependent and thus is an inappropriate criterion of fiber type identification.

Key words

Muscle Audition Ultrastructure Amphibian Evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baird, I.L.: Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates. Brain Behav. Evol. 10, 11–36 (1974)Google Scholar
  2. Baker, M.C.: The effects of severing the opercularis muscle on body orientation of the leopard frog, Rana pipiens. Copeia 1969, 613–616 (1969)Google Scholar
  3. Capranica, R.R., Frishkopf, L.S., Nevo, E.: Encoding of geographic dialects in the auditory system of the cricket frog. Science 182, 1272–1275 (1973)Google Scholar
  4. Capranica, R.R., Moffat, A.J.M.: Selectivity of the peripheral auditory system of spadefoot toads (Scaphiopus couchi) for sounds of biological significance. J. comp. Physiol. 100, 231–249 (1975)Google Scholar
  5. Dunn, E.R.: The “opercularis” muscle of salamanders. J. Morph. 69, 207–216 (1941)Google Scholar
  6. Eiselt, J.: Der Musculus opercularis und die mittlere Ohrsphäre der Amphibien. Arch. Naturgesch. 10, 179–270 (1941)Google Scholar
  7. Emerson, S.B.: The fossorial frog adaptive zone: a study of convergence and parallelism in the Anura. Ph. D. Dissertation, University of Southern California (1970)Google Scholar
  8. Gilly, W.F.: Slow fibers in the frog cruralis muscle. Tissue and Cell 7, 203–210 (1975)Google Scholar
  9. Gradwell, N., Walcott, B.: Dual functional and structural properties of the interhyoideus muscle of the bullfrog tadpole (Rana catesbeiana). J. exp. Zool. 176, 193–218 (1971)Google Scholar
  10. Hess, A.: The structure of vertebrate slow and twitch muscle fibers. Invest. Opthal. 6, 217–228 (1967)Google Scholar
  11. Hess, A.: Vertebrate slow muscle fibers. Physiol. Rev. 50, 40–62 (1970)Google Scholar
  12. Kingsbury, B.F., Reed, H.D.: The columella auris in Amphibia. J. Morph. 20, 549–628 (1909)Google Scholar
  13. Kuffler, S.W., Vaughan Williams, E.M.: Small-nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle, and the frog membrane characteristics of the fibers they innervate. J. Physiol. (Lond.) 121, 289–317 (1953)Google Scholar
  14. Loftus-Hills, J.J., Johnstone, B.M.: Auditory function, communication, and brain-evoked response in anuran amphibians. J. acoust. Soc. Amer. 47, 1131–1138 (1970)Google Scholar
  15. Lombard, R.E.: A comparative morphological analysis of the salamander inner ear. Ph. D. Dissertation, University of Chicago (1971)Google Scholar
  16. Lombard, R.E.: Comparative morphology of the inner ear in salamanders (Caudata: Amphibia). Contributions to Vertebrate Evolution, Vol. 2 (in press)Google Scholar
  17. Lombard, R.E., Straughan, I.R.: Functional aspects of anuran middle ear structures. J. exp. Biol. 61, 71–93 (1974)Google Scholar
  18. Lombard, R.E., Wake, D.B.: Tongue evolution in the lungless salamanders, family Plethodontidae. I. Introduction, theory and a general model of dynamics. J. Morph. 165, 1–22 (1976)Google Scholar
  19. Luft, J.H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)Google Scholar
  20. Monath, T.: The opercular apparatus of salamanders. J. Morph. 116, 149–170 (1965)Google Scholar
  21. Nasledov, G.A., Federov, V.V.: On “transitional” fibers in skeletal musculature of frog [in Russian]. Arkh. Anat. Hist. Embriol. 8, 72–76 (1965)Google Scholar
  22. Page, S.G.: Comparison of the fine structures of frog slow and twitch muscle fibers. J. Cell Biol. 26, 477–497 (1965)Google Scholar
  23. Peachey, L.D., Huxley, A.F.: Structural identification of twitch and slow striated muscle fibers of the frog. J. Cell Biol. 13, 177–180 (1962)Google Scholar
  24. Reynolds, E.S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  25. Sedra, S.N., Michael, M.I.: The ontogenesis of the sound conducting apparatus of the Egyptian toad Bufo regularis Reuss, with a review of this apparatus in the salientia. J. Morph. 104, 359–373 (1959)Google Scholar
  26. Smith, R.S., Ovalle, W.K., Jr.: Varieties of fast and slow extrafusal muscle fibers in amphibian hind limb muscles. J. Anat. (Lond.) 116, 1–24 (1973)Google Scholar
  27. Steward, J.W.: The tailed amphibians of Europe, pp. 42–45. New York: Taplinger Publishing Co. 1969Google Scholar
  28. Straughan, I.R.: An analysis of the mechanisms of mating call discrimination in the frogs Hyla regilla and H. cadaverina. Copeia 1975, 415–424 (1975)Google Scholar
  29. Trump, B.F., Smuckler, E.A., Benditt, E.P.: A method for staining epoxy sections for light microscopy. J. Ultrastruct. Res. 5, 343–348 (1961)Google Scholar
  30. Wake, D.B.: Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. So. Cal. Acad. Sci. 4, 1–111 (1966)Google Scholar
  31. Wever, E.G.: The Caecilian ear. J. exp. Zool. 191, 63–72 (1975)Google Scholar
  32. Wilder, I.W., Dunn, E.R.: The correlation of lunglessness in salamanders with a mountain brook habitat. Copeia 84, 62–68 (1920)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Robert P. Becker
    • 1
  • R. Eric Lombard
    • 1
  1. 1.Department of AnatomyUniversity of ChicagoChicagoUSA
  2. 2.Department of AnatomyUniversity of ChicagoChicagoUSA

Personalised recommendations