Cell and Tissue Research

, Volume 253, Issue 2, pp 319–326 | Cite as

Morphology of neurones associated with the antennal heart of Periplaneta americana (Blattodea, Insecta)

  • Günther Pass
  • Hans Agricola
  • Heiner Birkenbeil
  • Heinz Penzlin
Article

Summary

Innervation of the antennal heart, an independent accessory circulatory motor in the head of insects, was investigated in the cockroach Periplaneta americana by use of axonal cobalt filling and transmission electron microscopy. The muscles associated with this organ are innervated by neurones located in a part of the suboesophageal ganglion, generally considered to be formed by the mandibular neuromere. Dorsal unpaired median (DUM) and paired contralateral neurones were stained. The axons of all these neurones run along the circumoesophageal connectives and through the paired nervus corporis cardiaci III into the corpora cardiaca. They pass through these organs forming fine arborizations there and exit anteriorly as a small pair of nerves which terminate at the antennal heart-dilator muscles. Numerous branches of these nerves extend beyond the lateral borders of the large transverse dilator muscle and terminate in the ampullar walls of the antennal heart. These neurosecretory fibres form neurohaemal areas which obviously release their products into the haemolymph, which is pumped into the antennae. The possible functions of the neurones associated with the antennal heart are discussed with respect to both, their role as a modulatory input for the circulatory motor and as a neurohormonal release site.

Key words

Antennal heart Neurone morphology DUM-neurone Suboesophageal ganglion Neurohaemal organ Periplaneta americana (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman JS, Tyrer NM (1977) The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations. J Comp Neurol 172:431–440Google Scholar
  2. Aubele E, Klemm N (1977) Origin, destination and mapping of tritocerebral neurons of locust. Cell Tissue Res 178:199–219Google Scholar
  3. Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in whole mount preparations. Brain Res 138:359–363Google Scholar
  4. Beattie TM (1972) Fine structure of the vascular system supplying the antennae of Periplaneta americana. Abstr 14th Int Congr Entomol:132Google Scholar
  5. Beattie TM (1976) Autolysis in axon terminals of a new neurohaemal organ in the cockroach Periplaneta americana. Tissue Cell 8:305–310Google Scholar
  6. Blaney WM, Schoonhoven LM, Simmonds MSJ (1986) Sensitivity variations in insect chemoreceptors; a review. Experientia 42:13–19Google Scholar
  7. Christensen TA, Sherman TG, McCaman RE, Carlson AD (1983) Presence of octopamine in firefly photomotor neurons. Neuroscience 9:183–189Google Scholar
  8. Collins C, Miller T (1977) Studies on the action of biogenic amines on cockroach heart. J Exp Biol 67:1–15Google Scholar
  9. Davis NT (1982) Improved methods for cobalt filling and silver intensification of insect motor neurons. Stain Technol 57:239–244Google Scholar
  10. Denis JR, Bitsch J (1973) Morphologie de la tête des insectes. In: Grassé PP (ed) Traité de Zoologie. Vol 8/1. Masson, Paris, ppl-100Google Scholar
  11. Dönges J (1954) Der Kopf von Cionus scrophulariae L. (Curculionidae). Zool Jahrb Anat 74:1–76Google Scholar
  12. Dymond GR, Evans PD (1979) Biogenic amines in the nervous System of the cockroach, Periplaneta americana: association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones. Insect Biochem 9:535–545Google Scholar
  13. Eisenman EA, Alfert F (1982) A new fixation procedure for preserving the ultrastructure of marine invertebrate tissues. J Microsc 125:117–120Google Scholar
  14. Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–475Google Scholar
  15. Evans PD (1985) Octopamine. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Vol 11. Pergamon Press, Oxford, pp 499–530Google Scholar
  16. Evans PD, Myers CM (1986) Peptidergic and aminergic modulation of insect skeletal muscle. J Exp Biol 124:143–176Google Scholar
  17. Evans PD, O'Shea M (1978) The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. J Exp Biol 73:235–260Google Scholar
  18. Gundel M, Penzlin H (1978) The neuronal connections of the frontal ganglion of the cockroach Periplaneta americana. A histological and iontophoretical study. Cell Tissue Res 193:353–371Google Scholar
  19. Hertel W, Pass G, Penzlin H (1985) Electrophysiological investigation of the antennal heart of Periplaneta americana and its reactions to proctolin. J Insect Physiol 31:563–572Google Scholar
  20. Hertel W, Pass G, Penzlin H (1987) The effect of the neuropeptide proctolin and of octopamine on the antennal heart of Periplaneta americana. Proc IBRO Symp (in press)Google Scholar
  21. Hoffmann JA (1976) Appareil circulatoire et circulation. In: Grassé PP (ed) Traité de Zoologie. Vol 8/4. Masson, Paris, pp 2–91Google Scholar
  22. Hoyle G (1985) Generation of motor activity and control of behaviour: the roles of neuromodulator octopamine, and the orchestration hypothesis. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Vol 5. Pergamon Press, Oxford, pp 607–621Google Scholar
  23. Huddart H, Oldfield AC (1982) Spontaneous activity of foregut and hindgut visceral muscle of the locust, Locusta migratoria — II. The effect of biogenic amines. Comp Biochem Physiol 73 C:303–311Google Scholar
  24. Jones JC (1977) The circulatory system of insects. Thomas, SpringfieldGoogle Scholar
  25. Kirby P, Beck R, Clarke KU (1984) The stomatogastric nervous system of the house cricket Acheta domestica L. I. The anatomy of the system and the innervation of the gut. J Morphol 180:81–103PubMedGoogle Scholar
  26. Matsuda R (1965) Morphology and evolution of the insect head. Membr Am Ent Inst 4:1–344Google Scholar
  27. Miller TA (1985) Structure and physiology of the circulatory system. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Vol 3. Pergamon Press, Oxford, pp 289–353Google Scholar
  28. Orchard I, Lange AB (1985) Evidence for octopaminergic modulation of an insect visceral muscle. J Neurobiol 16:171–181Google Scholar
  29. Pass G (1980) The anatomy and ultrastructure of the antennal circulatory organs in the cockchafer beetle Melolontha melolontha L. (Coleoptera, Scarabaeidae). Zoomorphology 96:77–89Google Scholar
  30. Pass G (1985) Gross and fine structure of the antennal circulatory organ in cockroaches (Blattodea, Insecta). J Morphol 185:255–268Google Scholar
  31. Pass G, Sperk G, Agricola H, Baumann E, Penzlin H (1988) Octopamine in a neurohaemal area within the antennal heart of the American cockroach. J Exp Biol (in press)Google Scholar
  32. Pawlowa M (1895) Über ampullenartige Blutcirculationsorgane im Kopfe verschiedener Orthopteren. Zool Anz 18:7–13Google Scholar
  33. Pinet JM (1964) Les coeurs accessoires antennaires de Rhodnius prolixus Stal. (Heteroptera, Reduviidae). Bull Soc Zool Fr 89:443–449Google Scholar
  34. Platt N, Reynolds SE (1986) The pharmacology of the heart of the caterpillar, the tobacco hornworm, Manduca sexta. J Insect Physiol 32:221–230Google Scholar
  35. Remane A (1963) Über die Homologisierungsmöglichkeiten bei Verbindungsstrukturen (Muskeln, Blutgefäßen, Nerven) und Hohlräumen. Zool Anz 170:481–489Google Scholar
  36. Rowell HF (1976) The cells of the insect neurosecretory system: constancy, variability and the concept of the unique identifiable neuron. Adv Insect Physiol 12:63–123Google Scholar
  37. Scholl G (1969) Die Embryonalentwicklung des Kopfes und Prothorax von Carausius morosus Br. (Insecta, Phasmida). Z Morphol Tiere 65:1–142Google Scholar
  38. Snodgrass RE (1960) Facts and theories concerning the insect head. Smiths Misc Coll 142:1–61Google Scholar
  39. Tublitz NJ, Truman JW (1985) Insect cardioactive peptides. I. Distribution and molecular characteristics of two cardioacceleratory peptides in the tobacco hawkmoth Manduca sexta. J Exp Biol 114:365–379Google Scholar
  40. Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Philos Trans R Soc Lond [Biol] 297:91–123Google Scholar
  41. Tyrer NM, Shaw MK, Altman JS (1980) Intensification of cobaltfilled neurons in sections (light and electron microscopy). In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Insect nervous system. Springer, Berlin Heidelberg New York, pp 429–446Google Scholar
  42. Watson AHD (1984) The dorsal unpaired median neurons of the locust metathoracic ganglion: neuronal structure and diversity, and synapse distribution. J Neurocytol 13:303–327Google Scholar
  43. Weevers RdeG (1985) The insect ganglia. In: Kerkut GA, Gilbert LI ed. Comprehensive insect physiology, biochemistry and pharmacology. Vol 5. Pergamon Press, Oxford, pp 213–297Google Scholar
  44. Willey RB (1961) The morphology of the stomodeal nervous system in Periplaneta americana (L.) and other Blattaria. J Morphol 108:219–247Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Günther Pass
    • 1
  • Hans Agricola
    • 2
  • Heiner Birkenbeil
    • 2
  • Heinz Penzlin
    • 2
  1. 1.Institute for Zoology, University of ViennaViennaAustria
  2. 2.Department of Animal PhysiologyFriedrich Schiller University JenaJenaGDR

Personalised recommendations