Cell and Tissue Research

, Volume 149, Issue 2, pp 245–266 | Cite as

Structure and fine structure of the hypophyseal pars distalis in endigenous African species of the genus Tilapia

  • John F. Leatherland
  • J. N. Ball
  • Mohammed Hyder


The structure and fine structure of the pars distalis hypophyseos was examined in five species of Tilapia fishes (T. alcalica, T. grahami, T. leucosticta, T. zillii, T. nigra) which were collected from lakes of a wide range of salinities. The pars distalis in all the species is composed of 5 granulated (“secretory”) and 1 chromophobic cell types. The rostral pars distalis prolactin cells appear most numerous and active in the fresh water species and smaller and least active in the “soda” lake fish. The evidence from nuclear measurements suggests that the species adapted to hyposmotic media have compensated for the freshwater environment (and the subsequent need for greater prolactin secretion) by increasing the number of prolactin cells rather than by increasing the synthetic activity of individual cells.

In “soda” lake species which were acclimated to fresh water the prolactin cells are markedly hyperactive and degranulated when compared with any other group.

The ACTH cells appear more active in the “soda” lake species than in the fresh water groups, however, these cells are maximally active in “soda” lake fish acclimated to fresh water.

The rostral pars distalis stellate cells are described and discussed in relation to their possible involvement in the release of hormone from the pars distalis “secretory” cells.

The proximal pars distalis somatotrophs appear active in all the species investigated although they were maximally active in fresh water acclimated “soda” lake species. The structure of the proximal pars distalis gonadotrophs and thyrotrophs is variable both within the same animal and between the species but the variation is not consistent with environmental salinity parameters.

The means by which granules are released from the different cell types is discussed.

The work was supported by grants in aid of research from SRC (J.F.L), University of Nairobi (J. F. L. and M. H), NRC (J.F.L.), USPMS (AM 13795, J. N. B.), Munitarp Foundation (M. H.) and by a travel scholarship from the Royal Society (J.F.L.).

The paper is number 091 in the physiology of migration series.

Key words

Adenohypophysis Tilapia Salinity Cell types Light- and electron microscopy Teleost fish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, M.: The ultrastructure of the cell types and of the neurosecretory innervation in the pituitary of Mugil cephalus L. from fresh water, the sea, and a hypersaline lagoon. I. The rostral pars distalis. Gen. comp. Endocr. 17, 334–350 (1971)Google Scholar
  2. Ball, J. N.: Prolactin (fish prolactin or paralactin) and growth hormone. In: Fish Physiology (Hoar, W. S. and Randall, D. J. eds.). New York: Academic Press 1969Google Scholar
  3. Ball, J. N., Baker, B.: The pituitary gland: Anatomy and histophysiology. In: Fish Physiology (Hoar, W. S. and Randall, D. J. eds.). New York: Academic Press 1969Google Scholar
  4. Barnes, B. G.: Comparative cytology of the anterior pituitary of the male and female mouse. Eur. Reg. Conf. Electron Micr., Delft (1960)Google Scholar
  5. Bloom, W., Fawcett, D. W.: A Textbook of Histology. Philadelphia-London-Toronto: W. B. Saunders 1968Google Scholar
  6. Chartier, M. M.: Influence de l'hormone somatotrope sur les teneurs en eau et en électrolytes du plasma et du muscle de la truite arcen-ciel (Salmo gairdnerii). C. R. Soc. Biol. (Paris) 153, 1757–1761 (1959)Google Scholar
  7. Chester Jones, I., Chan, D.K.O., Henderson, I. W., Ball, J. N.: The adrenocortical steroids, adrenocorticotropin and the corpuscles of Stannius. In: Fish Physiology (Hoar, W. S. and Randall, D. J., eds). New York-London: Academic Press 1969Google Scholar
  8. Clark, W. C.: Disc-electrophoretic identification of prolactin in the cichlid teleosts Tilapia and Cichlasoma and densitometric measurement of its concentration in Tilapia pituitaries during salinity transfer experiments. Canad. J. Zool., 51, 687–695 (1973)Google Scholar
  9. Cook, H., Overbeeke, A. P. van: Ultrastructure of the pituitary gland (pars distalis) in sockeye salmon (Oncorhynchus nerka) during gonad maturation. Z. Zellforsch. 130, 338–350 (1972)Google Scholar
  10. Dharmamba, M.: Studies on the effects of hypophysectomy and prolactin on plasma osmolarity and plasma sodium in Tilapia mossambica, Gen. comp. Endocr. 14, 256–269 (1970)Google Scholar
  11. Dharmamba, M., Handin, R. I., Nandi, J., Bern, H.A.: Effect of prolactin on freshwater survival and on plasma osmotic pressure of hypophysectomized Tilapia mossambica. Gen. comp. Endocr. 9, 295–302 (1967)Google Scholar
  12. Dharmamba, M., Maetz, J.: Effects of hypophysectomy and prolactin on the sodium balance of Tilapia mossambica in fresh water. Gen. comp. Endocr. 19, 175–183 (1971)Google Scholar
  13. Dharmamba, M., Mayer-Gostan, N., Maetz, J., Bern, H. A.: Effect of prolactin on sodium movement in Tilapia mossambica adapted to sea water. Gen. comp. Endocr. 21, 179–187 (1973)Google Scholar
  14. Dharmamba, M., Nishioka, R. S.: Response of “prolactin-secreting” cells of Tilapia mossambica to environmental salinity. Gen. comp. Endocr. 10, 409–420 (1968)Google Scholar
  15. Ensor, D. M., Ball, J. N.: Prolactin and osmoregulation in fishes. Fed. Proc. 31, 1615–1623 (1972)Google Scholar
  16. Fawcett, D. W.: The Cell. Its Organelles and Inclusions. Philadelphia-London: W. B. Saunders, 1969Google Scholar
  17. Holtzman, S. and Schreibman, M. P.: Morphological changes in the “prolactin” cell of the freshwater teleost, Xiphophorus hellerii, in salt water. J. exp. Zool. 180, 187–196 (1972)Google Scholar
  18. Hopkins, C. R.: The fine structural localization of acid phosphatase in the prolactin cell of the teleost pituitary following the stimulation and inhibition of secretory activity. Tiss. and Cell 1, 653–671 (1969)Google Scholar
  19. Hopkins, C. R., Baker, B. I.: The fine structural localization of acid phosphate in the prolactin cell of the eel pituitary. J. Cell Sci. 3, 357–364 (1968)Google Scholar
  20. Lam, T. J.: Prolactin and hydromineral regulation in fishes. Gen. comp. Endocr., Suppl. 3, 3, 328–338 (1972)Google Scholar
  21. Leatherland, J. F.: Seasonal variation in the structure und ultrastructure of the pituitary in the marine form (trachurus) of the threespine stickleback. Gasterosteus aculeatus L. I. Rostral pars distalis. Z. Zellforsch. 104, 301–317 (1970)Google Scholar
  22. Leatherland, J. F.: Histophysiology and innervation of the pituitary gland of the goldfish,, Carassius auratus L.: A light and electron microscope investigation. Canad. J. Zool. 50, 835–844 (1972)Google Scholar
  23. Leatherland, J. F., Hyder, M., Ensor, D. M.: Regulation of plasma Na+ and K+ concentrations in five African species of Tilapia fishes. Comp. Biochem. Physiol., in press (1974)Google Scholar
  24. Leatherland, J. F., McKeown, B. A.: Effect of ambient salinity on prolactin and growth hormone secretion and on hydro-mineral regulation in kokanee salmon smolts (Oncorhynchus nerka). J. comp. Physiol., in press (1974)Google Scholar
  25. Leatherland, J. F., McKeown, B. A., John, T. M.: Circadian rhythm of plasma prolactin, growth hormone, glucose and free fatty acid in juvenile kokanee salmon, Oncorhynchus nerka. Comp. Biochem. Physiol., 47 A, 821–828 (1974)Google Scholar
  26. Nagahama, Y., Nishioka, R. S., Bern, H. A.: Responses of prolactin cells of two euryhaline marine fishes, Gillichthys mirabilis and Platichthys stellatus to environmental salinity. Z. Zellforsch. 136, 153–168 (1973)Google Scholar
  27. Nagahama, Y., Yamamoto, K.: Basophils in the adenohypophysis of the goldfish (Carassius auratus) Gumma Sym. Endocr. 6, 39–55 (1969)Google Scholar
  28. Nagahama, Y., Yamamoto, K.: Morphological studies on the pituitary of the chum salmon, Oncorhynchus keta (1). Fine structure of the adenohypophysis. Bull. Fac. Fish. Hokkaido Univ. 20, 293–302 (1970)Google Scholar
  29. Nicholl, C. S.: Some observations and speculation on the mechanism of “depletion”, “repletion”, and release of adenohypophyseal hormones. Gen. comp. Endocr. Suppl. 3, 86–96 (1972)Google Scholar
  30. Öztan, N.: The fine structure of the adenohypophysis of Zoarces viviparous L. Z. Zellforach. 69, 699–718 (1966)Google Scholar
  31. Olivereau, M., Ball, J. N.: Pituitary influences on osmoregulation in teleosts. Mem. Soc. Endocr. 18, 57–85 (1970)Google Scholar
  32. Pandey, S., Leatherland, J. F.: Comparison of the effects of methallibure and thiourea on the testis, thyroid and adenohypophysis of the adult and juvenile guppy, Poecilia reticulata Peters. Canad. J. Zool. 48, 445–450 (1970)Google Scholar
  33. Pang, P.K.T.: Endocrine control of calcium metabolism in teleosts. Amer. Zool. 73, 775–792 (1973)Google Scholar
  34. Percy, R.: Structure and fine structure of the pituitary gland in the sea lamprey (Petromyzon marinus). M. Sc. Thesis, University of Guelph (1973)Google Scholar
  35. Percy, R., Leatherland, J. F.: Fine structure of the pituitary gland in larval sea lampreys (Petromyzon marinus L.). J. Endocr. 59, XL-XLI (1972)Google Scholar
  36. Steel, R.G.D., Torrie, J. M.: Principles and Procedures of Statistics. New York: Mc Graw Hill 1960Google Scholar
  37. Vila-Porcile, E.: Le réseau des cellules folliculo-stellaires et les follicules de l'adénohypophyse du rat (pars distalis). Z. Zellforsch. 129, 328–369 (1972)Google Scholar
  38. Weiss, M.: The release of pituitary secretion in the platyfish Xiphophorus maculatus (Guenther). Z. Zellforsch. 68, 783–794 (1965)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • John F. Leatherland
    • 1
  • J. N. Ball
    • 2
  • Mohammed Hyder
    • 3
  1. 1.Department of ZoologyUniversity of GuelphOntarioCanada
  2. 2.Department of ZoologyUniversity of SheffieldEngland
  3. 3.Department of ZoologyUniversity of NairobiNairobiKenya

Personalised recommendations