Advertisement

Theoretical and Applied Genetics

, Volume 90, Issue 2, pp 242–246 | Cite as

Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers

  • C. S. Busso
  • C. J. Liu
  • C. T. Hash
  • J. R. Witcombe
  • K. M. Devos
  • J. M. J. de Wet
  • M. D. Gale
Article

Abstract

Sex as a factor affecting recovered recombination in plant gametes was investigated in pearl millet, Pennisetum glaucum, by using reciprocal three-way crosses [(AxB)xCvCx(A x B)]. The two populations were mapped at 42 loci pre-selected to cover the majority of the genome. No differences in recombination distances were observed at the whole-genome level and only a few individual linkage intervals were found to differ, all in favour of increased recombination through the male. Distorted segregations found in the three-way crosses provide evidence of post-gametic selection for particular gene(s) or chromosome regions. The significance of these results for the design of pearl millet breeding programmes and inheritance experiments, as well as for other experimental strategies, is discussed.

Key words

Pennisetum glaucum RFLP analysis Recombination rate Segregation distortion Genetic mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976) The genetic control of meiosis. Annu Rev Genet 10:53–134Google Scholar
  2. De Vicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178Google Scholar
  3. Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:7843–7902Google Scholar
  4. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bowden DW, Smith DR, Lander ES, Botstein D, Akots G, Rediker KS, Gravious T, Brown V, Rising MB, Parker C, Powers JA, Watt DE Kauffman ER, Bricker A, Phipps P, Muller-Ahle H, Fulton TM, Ng S, Schumm JW, Braman JC, Knowlton RG, Barker DE, Crooks SM, Lincoln SE, Daly MJ, Abrahamson J (1987) A genetic linkage group map of human genome. Cell 51:319–337Google Scholar
  5. Hanna WW (1990) Long-term storage of Pennisetum glaucum (L.) R. Br. pollen. Theor Appl Genet 79:605–608Google Scholar
  6. Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447Google Scholar
  7. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Framckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712Google Scholar
  8. Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  9. Liu CJ, Witcombe JR, Pittaway TS, Nash M, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487Google Scholar
  10. Maeda T (1939) Chiasma studies in the silk worm, Bombyx mori L. Jpn J Genet 15:118–127Google Scholar
  11. Reeves RH (1990) Sex, strain, and species differences affect recombination across an evolutionarily conserved segment of mouse chromosome 16. Genomics 8:141–148Google Scholar
  12. Robert T, Sarr A, Pernes J (1989) Sélections sur la phase haploïde chez le Mil [Pennisetum typhoides (Burm.) Stapf et Hubb.]: effet de la température. Genome 32:946–952Google Scholar
  13. Robert T, Lespinasse R, Pernes J Sarr A (1991) Gametophytic competition as influencing gene flow between wild and cultivated forms of pearl millet (Pennisetum typhoides). Genome 34: 195–200Google Scholar
  14. Robertson DS (1984) Different frequency in the recovery of cross over products from male and female gametes of plants hypoploid for B-A translocations in maize. Genetics 107:117–130Google Scholar
  15. Sarr A, Pernes J (1988) Analyses multivariése de descendances de rétrocroisements et mise en évidence de distorsions de ségrégation de caractères quantitatifs chez le mil [Pennisetum typhoides (Burm.) Stapf et Hubb.]. Genome 30:411–422Google Scholar
  16. Sarr A, Sandmeier M, Pernes J (1988) Gametophytic competition in pearl millet, Pennisetum typhoides (Stapf et Hubb.). Genome 30:924–929Google Scholar
  17. Sedcole TR (1977) Number of plants necessary to recover a trait. Crop Sci 17:667–668Google Scholar
  18. Zhuchenko AA, Korol AB, Vizir IY, Bocharnikova NI, Zamorzaeva NI (1989) Sex differences in crossover frequency for tomato and thale cress (Arabidopsis thaliana). Sov Genet 24:1104–1110Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • C. S. Busso
    • 1
  • C. J. Liu
    • 1
  • C. T. Hash
    • 2
  • J. R. Witcombe
    • 3
  • K. M. Devos
    • 1
  • J. M. J. de Wet
    • 2
  • M. D. Gale
    • 1
  1. 1.Cambridge LaboratoryColneyUK
  2. 2.International Crops Research Institute for the Semi-Arid Tropics,(ICRISAT)Andhra PradeshIndia
  3. 3.Centre for Arid Zone StudiesUniversity of WalesBangorUK

Personalised recommendations