Cell and Tissue Research

, Volume 150, Issue 2, pp 167–178 | Cite as

Ultrastructural study of pigment cells of human red hair

  • Peter Stanka


Pigment cells of human red hair (pheomelanocytes) are never connected to keratinocytes by desmosomes or other defined cell junctions. In the dendritic processes of pheomelanocytes, thin filaments, about 50–80 Å in diameter, and microtubuli can be observed. Early prepheomelanosomes contain loosely arranged filaments. With the onset of pheomelanogenesis dense material is deposited on the filaments. Distinction between late prepheomelanosomes and pheomelanosomes is not clearly possible, because of the disorganized appearance of the content. Furthermore, the content of pheomelanosomes sometimes seems to be disintegrated. By means of the DOPA reaction, tyrosinase activity is shown to be present in: a) prepheomelanosomes, b) large cisternae apposed at one side of dictyosomes, c) small cisternae of the smooth endoplasmic reticulum, and d) coated and uncoated vesicles. The results suggest that red pigment granules are formed in a manner similar to that of melanin granules. It is further assumed that an inadequate stability of pheomelanoprotein accounts for the inability of red-haired people to develop effective protection against ultraviolet light.

Key words

Pigment cell Red hair Sunburn Man Electron Microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. J.: Purification and quantitation of glutaraldehyde and its effect on several enzyme activities in skeletal muscle. J. Histochem. Cytochem. 15, 652–661 (1967)Google Scholar
  2. Barnicot, N. A., Birbeck, M. S. C., Cuckow, F. W.: The electron microscopy of human hair pigments. Ann. Eugenics 19, 231–249 (1954/55)Google Scholar
  3. Birbeck, M. S. C., Barnicot, N. A.: Electron microscope studies on pigment formation in human hair follicles. In: Pigment cell biology, p. 548–559 (ed. M. Gordon). New York: Academic Press 1959Google Scholar
  4. Birbeck, M. S. C., Mercer, E. H., Barnicot, N. A.: The structure and formation of pigment granules in human hair. Exp. Cell Res. 10, 505–514 (1956)Google Scholar
  5. Brumbaugh, J. A.: Ultrastructural differences between forming eumelanin and pheomelanin as revealed by the pink eye mutation in the fowl. Develop. Biol. 18, 375–390 (1968)Google Scholar
  6. Brumbaugh, J. A.: The ultrastructural effects of the I and S loci upon black-red melanin differentiation in the fowl. Develop. Biol. 24, 392–412 (1971)Google Scholar
  7. Brumbaugh, J. A., Bowers, R. R., Chatterjee, G. E.: Genotype-substrate interactions altering Golgi development during melanogenesis. Pigment Cell 1, 47–54 (1973)Google Scholar
  8. Brunk, U. T., Ericsson, J. L. E.: Cytochemical evidence for the leakage of acid phosphatase through ultrastructurally intact lysosomal membranes. Histochem. J. 4, 479–491 (1972)Google Scholar
  9. Egner, O.: Zur Physiologie der Melanosomenverlagerung in den Melanophoren von Pterophyllum scalare Cuv. u. Val. Cytobiologie 4, 262–292 (1971)Google Scholar
  10. Eppig, J. J.: Melanogenesis in amphibians. I. A study of the fine structure of the normal and phenylthiourea-treated pigmented epithelium in Rana pipiens tadpole eyes. Z. Zellforsch. 103, 238–246 (1970)Google Scholar
  11. Eppig, J. J., Dumont, J. N.: Cytochemical localization of tyrosinase activity in pigmented epithelial cells of Rana pipiens and Xenopus laevis larvae. J. Ultrastruct. Res. 39, 397–410 (1972)Google Scholar
  12. Fitzpatrick, T. B., Breathnach, A. S.: Das epidermale Melanin-Einheit-System. Derm. Wschr 147, 481–489 (1963)Google Scholar
  13. Flesch, P.: Studies of the red pigmentary system. Arch. Derm. 101, 475–482 (1970)Google Scholar
  14. Görnitz, K.: Versuch einer Klassification der häufigsten Federfärbungen. J. Ornithologie 71, 127–131 (1923)Google Scholar
  15. Huxley, H. E., Zubay, G.: Preferential staining of nucleic acid-containing structures for electron microscopy. J. biophys. biochem. Cytol. 11, 273–296 (1961)Google Scholar
  16. Jimbow, K., Takahashi, M., Sato, S., Kukita, A.: Ultrastructural and cytochemical studies of melanogenesis in melanocytes of normal human hair matrix. J. electr. Microscopy 20, 87–92 (1971)Google Scholar
  17. Johnson, B. E., Mandell, G., Daniels, jun. F.: Melanin and cellular reactions to ultraviolet radiation. Nature (Lond.) New Biol. 235, 147–149 (1972)Google Scholar
  18. Kellenberger, E., Ryter, A., Séchaud, J.: Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. biophys. biochem. Cytol. 4, 671–678 (1958)Google Scholar
  19. Komnick, H., Stockem, W., Wohlfarth-Bottermann, K. E.: Cell motility: mechanisms in protoplasmic streaming and ameboid movement. In: International review of cytology, vol. 34, p. 169–249 (ed. G. H. Bourne, J. F. Danielli, K. W. Jeon). New York-London: Academic Press 1973Google Scholar
  20. Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)Google Scholar
  21. Malawista, S. E.: The melanocyte model. Colchicine-like effects of other antimitotic agents. J. Cell Biol. 49, 848–855 (1971)Google Scholar
  22. Maul, G. G., Brumbaugh, J. A.: On the possible function of coated vesicles in melanogenesis of the regenerating fowl feather. J. Cell Biol. 48, 41–48 (1971)Google Scholar
  23. Mishima, Y.: Electron microscopy of melanin synthesis in intradermal nevus cells. J. invest. Derm. 39, 369–372 (1962)Google Scholar
  24. Model, P. G.: The ultrastructural localization of DOPA-3H in differentiating amphibian melanophores grown in vitro. Develop. Biol. 34, 297–308 (1973)Google Scholar
  25. Mottaz, J. H., Zelickson, A. S.: Melanin transfer: a possible phagocytic process. J. invest. Derm. 49, 605–610 (1967)Google Scholar
  26. Moyer, F.: Electron microscope observations on the origin, development, and genetic control of melanin granules in the mouse eye. In: The structure of the eye. p. 469–486 (ed. G. K. Smelser). New York-London: Academic Press 1961Google Scholar
  27. Moyer, F.: Genetic variations in the fine structure and ontogeny of mouse melanin granules. Amer. Zoologist 6, 43–66 (1966)Google Scholar
  28. Nagano, T.: An electron microscopic observation on the cross-striated fibrils occurring in the human spermatocyte. Z. Zellforsch. 58, 214–218 (1962)Google Scholar
  29. Nakai, T., Shubik, P,: Electronmicroscopic radioautography: the melanosome as a site of melanogenesis in neoplastic melanocytes. J. invest. Derm. 43, 267–269 (1964)Google Scholar
  30. Parakkal, P. F.: The fine structure of melanocytes in the hair follicles of the guinea-pig. In: Advances in biology of skin, vol. 8, p. 179–188 (eds. W. Montagna, F. Hu). Oxford: Pergamon Press 1967Google Scholar
  31. Quevedo, W. C.: Genetic control of melanin metabolism within the melanin unit of mammalian epidermis. J. invest. Derm. 60, 407–417 (1973)Google Scholar
  32. Reaven, E. P., Axline, S. G.: Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J. Cell Biol. 59, 12–27 (1973)Google Scholar
  33. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  34. Sakaguchi, H.: Pericentriolar filamentous bodies. J. Ultrastruct. Res. 12, 13–21 (1965)Google Scholar
  35. Seiji, M., Iwashita, S.: Intracellular localization of tyrosinase and site of melanin formation in melanocyte. J. invest. Derm. 45, 305–314 (1965)Google Scholar
  36. Seiji, M., Shimao, K., Birbeck, M. S. C., Fitzpatrick, T. B.: Subcellular localization of melanin biosynthesis. Ann. N.Y. Acad. Sci. 100, 497–533 (1963)Google Scholar
  37. Spurr, A. R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)Google Scholar
  38. Stanka, P.: Die Dopa-Reaktion, eine brauchbare Methode in der Elektronenmikroskopie. Untersuchung am retinalen Pigmentepithel von Hühnerembryonen. Mikroskopie 26, 169–174 (1970)Google Scholar
  39. Stanka, P.: Elektronenmikroskopisch-zytochemische Lokalisation von Tyrosinase-Aktivität. IV. Symp. dermatologicum, Brno 1970. Acta Fac. Med. Univ. Brunensis (Microscopia cutis electronica) 41, 271–273 (1971a)Google Scholar
  40. Stanka, P.: Elektronenmikroskopische Untersuchung über die Prämelanosomenentstehung im retinalen Pigmentepithel von Hühnerembryonen. Z. Zellforsch. 112, 120–128 (1971b)Google Scholar
  41. Stanka, P.: Die Melanocyten der Haut: Rezeptoren für Licht? Ein Beitrag über die Hautbräunung. Hautarzt 24, 260–261 (1973)Google Scholar
  42. Stanka, P., Kinzel, V., Mohr, U.: Elektronenmikroskopische Untersuchung über die Prämelanosomenentstehung an Melanomzellen in vitro. Virchows Arch. B 2, 91–102 (1969)Google Scholar
  43. Taylor, D. L., Condeelis, J. S., Moore, P. L., Allen, R. D.: The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J. Cell Biol. 59, 378–394 (1973)Google Scholar
  44. Toda, K., Pathak, M. A., Parrish, J. A., Fitzpatrick, T. B.: Alteration of racial differences in melanosome distribution in human epidermis after exposure to ultraviolet light. Nature (Lond.) New Biol. 236, 143–145 (1972)Google Scholar
  45. Venable, J. H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965)Google Scholar
  46. Werner, G.: Periodisch quergestreifte Filamente und ihre Veränderungen wahrend der Spermatogenese bei Bombina variegata L. Z. Zellforsch. 71, 245–255 (1966)Google Scholar
  47. Wolff, K., Konrad, K.: Melanin pigmentation: An in vivo model for studies of melanosome kinetics within keratinocytes. Science 174, 1034–1035 (1971)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Peter Stanka
    • 1
  1. 1.Arbeitsgruppe für Mikromorphologie, Institut für AnatomieRuhr-UniversitätBochum

Personalised recommendations