Cell and Tissue Research

, Volume 161, Issue 1, pp 85–102 | Cite as

The fine structure of the centrohelidian Heliozoan Heterophrys marina

  • Christian F. Bardele


The fine structure of Heterophrys marina (Centrohelidia, Heliozoa) is described with special reference to centroplast structure, morphogenesis and “behaviour” of kinetocysts (= axopodial granules which perform saltatory movement), and formation of organic spicules in a new type of organelle located in the plasma membrane. A low calcium pretreatment and fixation was used to improve preservation of highly labile axopodia which near their distal end contain a single microtubule (MT) only. Two varieties of H. marina with a respective maximum of 6 and 12 MTs per axopodium, and 2 hitherto undescribed species, H. elati and H. multipoda, were found among 9 stocks collected in Europe and North America. In all species only the central 6 MTs of each axoneme originate from a scaffolding layer of electron dense material which surrounds the central granule. Evidence is presented which indicates that in Heterophrys self-linkage is not the only principle of MT pattern generation but that instead precisely localized MT nucleation and specific linkage of MTs within the cortex of the centroplast lead to the MT patterns observed. Prekinetocysts originate from vesicles found in the neighborhood of the dictyosomes. After maturation the kinetocysts become attached to the plasma membrane which seems to play an important role both in selection of particles transported in the axopodia and particle movement as well.

Key words

Heliozoa Microtubule organizing center Role of calcium in microtubule preservation Kinetocyst movement Spicule formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardele, C. F.: Ultrastruktur der “Körnchen” auf den Axopodien von Raphidiophrys (Centrohelida, Heliozoa). Z. Naturforsch. 24b, 362–363 (1969)Google Scholar
  2. Bardele, C. F.: Comparative ultrastructural studies on Centrohelida. J. Protozool. 17 (Suppl.), 10–11 (1970)Google Scholar
  3. Bardele, C. P.: Microtubule model systems: Cytoplasmic transport in the suctorian tentacle and the centrohelidian axopod. In: 29th Annual EMSA Meeting (ed. C. J. Arceneaux), p. 334–335. Baton Rouge: Claitor's Publishing Division 1971Google Scholar
  4. Bardele, C. F.: Cell cycle, morphogenesis, and ultrastructure in the pseudoheliozoan Clathrulina elegans. Z. Zellforsch. 130, 219–242 (1972)Google Scholar
  5. Bardele, C. F.: The dynamics of the heliozoan axopod. Progress in Protozoology, 4th Intern. Congress on Protozoology, Clermont-Ferrand (1973a)Google Scholar
  6. Bardele, C. F.: Struktur, Biochemie und Funktion der Mikrotubuli. Cytobiologie 7, 442–488 (1973b)Google Scholar
  7. Borisy, G. G., Olmsted, J. B.: Nucleated assembly of microtubules in porcine brain extracts. Science 177, 1196–1197 (1972)Google Scholar
  8. Davidson, L. A.: Ultrastructure of the heliozoan Heterophrys marina and the helioflagellate Ciliophrys marina. J. Ultrastruct. Res. 38, 219 (1972)Google Scholar
  9. Davidson, L.: Contractile axopodia of the centrohelidian heliozoan Heterophrys marina. J. Cell Biol. 59, 71a (1973)Google Scholar
  10. Davidson, L.: Ph. D. Thesis. University of California at Berkeley, 1974Google Scholar
  11. Dobell, C.: On Oxnerella maritima, nov. gen., nov. spec., a new Heliozoan, and its method of division; with some remarks on the centroplast of the heliozoa. Quart. J. micr. Sci. 62, 515–538 (1917)Google Scholar
  12. Edds, K.: Particle movements in artificial axopodia of Eehinosphaerium nucleofilum. J. Cell Biol. 59, 88a (1973)Google Scholar
  13. Fitzharris, T. P., Bloodgood, R. A., McIntosh, J. R.: Particle movement in the axopodia of Echinosphaerium: Evidence concerning the role of the axoneme. J. Mechanochem. Cell Motility 1, 117–124 (1972)Google Scholar
  14. Föyn, B.: Lebenszyklus, Cytologie und Sexualität der Chlorophycee Gladophora Suhriana Kützing. Arch. Protistenk. 83, 1–56 (1934)Google Scholar
  15. Harris, P.: Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J. Cell Biol. 14, 475–487 (1962)Google Scholar
  16. Hayat, M. A.: Principles and techniques of electron microscopy. Biological applications, vol. 1. New York: Van Nostrand Reinhold Company 1970Google Scholar
  17. Hepler, P. K., Palevitz, B. A.: Microtubules and microfilaments. Ann. Rev. Plant Physiol. 25, 309–362 (1974)Google Scholar
  18. Hertwig, R., Lesser, E.: Über Rhizopoden und denselben nahestehende Organismen, III. Teil Heliozoa. Arch. mikr. Anat. 10 (Suppl.), 147–236 (1874)Google Scholar
  19. Kormos, J.: On the structure of the centroplast. Acta biol. Acad. Sci. hung. 22, 81–83 (1971)Google Scholar
  20. Manton, I.: Further observations on scale formation in Chrysochromulina chiton. J. Cell Sci. 2, 411–418 (1967)Google Scholar
  21. McGee-Russell, S. M., Allen, R. D.: Reversible stabilization of labile microtubules in the reticulopodial network of Allogromia. In: Advances in cell and molecular biology (ed. E. J. DuPraw), vol. 1, p. 153–184. New York: Academic Press 1971Google Scholar
  22. Ockleford, C. D., Tucker, J. B.: Growth, breakdown, repair and rapid contraction of microtubular axopodia in the heliozoan Actinophrys sol. J. Ultrastruct. Res. 44, 369–387 (1973)Google Scholar
  23. Penard, E.: Les Héliozoaires d'eau douce. Genève: Kündig 1904Google Scholar
  24. Pickett-Heaps, J. D.: The evolution of the mitotic apparatus: An attempt at comparative ultrastructrual cytology in dividing plant cells. Cytobios 1, 257–280 (1969)Google Scholar
  25. Rebhun, L. I.: Polarized intracellular particle transport: Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol. 32, 93–137 (1972)Google Scholar
  26. Roberts, K.: Cytoplasmic microtubules and their functions. In: Progress in biophysics and molecular biology, vol. 28, p. 371–420. Oxford and New York: Pergamon Press 1974Google Scholar
  27. Satir, B.: Membrane events during the secretory process. In: Transport at the cellular level. Symp. Soc. Exp. Biol., vol. 28, p. 399–418. Cambridge: University Press 1974Google Scholar
  28. Singer, S. J., Nicolson, G. L.: The fluid mosaic model of the structures of cell membranes. Science 175, 720–731 (1972)Google Scholar
  29. Schnepf, E., Deichgräber, G.: Über die Feinstruktur von Synura petersenii unter besonderer Berücksichtigung der Morphogenese ihrer Kieselschuppen. Protoplasma 68, 85–106 (1969)Google Scholar
  30. Tilney, L. G.: How microtubule patterns are generated. The relative importance of nucleation and bridging of microtubules in the formation of the axoneme of Raphidiophrys. J. Cell Biol. 51, 837–854 (1971)Google Scholar
  31. Tilney, L. G., Bryan, J., Bush, D. J., Fujiwara, K., Mooseker, M. S., Murphy, D. B., Snyder, D. H.: Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59, 267–275 (1973)Google Scholar
  32. Weisenberg, R. C.: Microtubule formation in vitro in solutions containing low calcium concentration. Science 177, 1104–1105 (1972)Google Scholar
  33. Wohlfarth-Bottermann, K. E., Krüger, F.: Protistenstudien VI. Die Feinstruktur der Axopodien und der Skelettn adeln von Heliozoen. Protoplasma 43, 177–191 (1954)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Christian F. Bardele
    • 1
  1. 1.Institut für Biologie III der Universität TübingenGermany

Personalised recommendations