Advertisement

Cell and Tissue Research

, Volume 155, Issue 2, pp 135–154 | Cite as

Synthesis and intracellular transport of proteins in the exocrine pancreas of the frog (Rana esculenta)

I. An ultrastructural and autoradiographic study
  • J. W. Slot
  • J. J. Geuze
  • C. Poort
Article

Summary

The route by which secretory proteins are transported in the frog exocrine pancreas cell was investigated by an ultrastructural and electron microscope autoradiographic analysis of in vivo3H-leucine labelled tissue. The ultrastructure of the cell is characteristic of serous epithelial cells and resembles that of mammalian exocrine pancreas cells very closely. Autoradiographic results revealed that the proteins, after being synthesized in the rough endoplasmic reticulum (RER), are transported through the Golgi cisternae to condensing vacuoles which subsequently change into secretory granules.

The determination of the timing of this transport was complicated by a very slow turnover of leucine in the frog. Nevertheless, by a semi-quantitative approach, some time characteristics could be estimated: about 11 min after the onset of their synthesis the proteins enter the Golgi system, and about 25 min later the condensing vacuoles. Secretory granules become labelled between 60 and 120 min.

These results are discussed, also in relation to the transport route and kinetics in mammalian tissue.

Key words

Exocrine pancreas Frog Ultrastructure Intracellular transport Autoradiography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bainton, D. F., Farquhar, M. G.: Segregation and packaging of granule enzymes in eosinophilic leucocytes. J. Cell Biol. 45, 54–73 (1970)Google Scholar
  2. Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorometric estimation of desoxyribonucleic acid. Biochem. J. 62, 315–322 (1956)Google Scholar
  3. Caro, L. G., Palade, G. E.: Protein synthesis, storage and discharge in the pancreatic exocrine cell. J. Cell Biol. 20, 473–495 (1964)Google Scholar
  4. Castle, J. D., Jamieson, J. D., Palade, G. E.: Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J. Cell Biol. 53, 290–311 (1972)Google Scholar
  5. Claude, A.: Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granules synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J. Cell Biol. 47, 745–766 (1970)Google Scholar
  6. Friend, D. S., Farquhar, M. G.: Functions of coated vesicles during protein absorption in the rat vas deferens. J. Cell Biol. 35, 357–376 (1967)Google Scholar
  7. Geuze, J. J.: Light and electron microscope observations on auto- and heterophagy in the exocrine pancreas of the hibernating frog (Rana esculenta). J. Ultrastruct. Res. 32, 391–404 (1970)Google Scholar
  8. Glaumann, H.: Studies on the synthesis and transport of albumin in microsomal subfractions from rat liver. Biochim. biophys. Acta (Amst.) 224, 206–218 (1970)Google Scholar
  9. Glaumann, H., Ericsson, J. L. E.: Evidence for the participation of the Golgi apparatus in the intracellular transport of nascent albumin in the liver cell. J. Cell Biol. 47, 555–567 (1970)Google Scholar
  10. Herzog, V., Miller, F.: Die Lokalisation endogener Peroxidase in der Glandula parotis der Ratte. Z. Zellforsch. 107, 403–420 (1970)Google Scholar
  11. Herzog, V., Miller, F.: The localization of endogenous peroxidase in the lacrimal gland of the rat during postnatal development. J. Cell Biol. 53, 662–680 (1972)Google Scholar
  12. Heyningen, H. E. van: Secretion of protein by the acinar cells of the rat pancreas, as studied by electron microscopic radioautography. Anat. Rec. 148, 485–497 (1964)Google Scholar
  13. Hopkins, C. R.: The biosynthesis, intracellular transport, and packaging of melanocyte-stimulating peptides in the amphibian pars intermedia. J. Cell Biol. 53, 642–653 (1972)Google Scholar
  14. Jamieson, J. D., Palade, G. E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J. Cell Biol. 34, 577–596 (1967)Google Scholar
  15. Jamieson, J. D., Palade, G. E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J. Cell Biol. 34, 597–615 (1967)Google Scholar
  16. Komáromy, L., Montskó, T., Tigyi, A., Lissak, K.: Light and electron microscopic studies of the acinar cells of the pancreas after tasting and feeding. Acta physiol. Acad. Sci. hung. 31, 209–216 (1967)Google Scholar
  17. Kraehenbuhl, J. P., Jamieson, J. D.: Solid-phase conjugation of Ferritin to Fab-fragments of immunoglobulin G for use in antigen localization on thin sections. Proc. nat. Acad. Sci. (Wash.) 69, 1771–1775 (1972)Google Scholar
  18. Lettré, H., Paweletz, N.: Probleme der elektronenmikroskopischen Autoradiographie. Naturwissenschaften 53, 268–271 (1966)Google Scholar
  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  20. Miller, F., Herzog, V.: Die Lokalisation von Peroxidase und saurer Phosphatase in eosinophilen Leukocyten während der Reifung. Z. Zellforsch. 97, 84–110 (1969)Google Scholar
  21. Morisset, J. A., Webster, P. D.: Effects of fasting and feeding on protein synthesis by the rat pancreas. J. clin. Invest. 51, 1–8 (1972)Google Scholar
  22. Peters, Th., Jr., Fleischer, B., Fleischer, S.: The biosynthesis of rat serum albumin. IV: Apparent passage of albumin through the Golgi apparatus during secretion. J. biol. Chem. 246, 240–244 (1970)Google Scholar
  23. Poort, C., Geuze, J. J.: The effect of temperature elevation and feeding on the pancreas of Rana esculenta in late winter. Z. Zellforsch. 98, 1–8 (1969)Google Scholar
  24. Poort, C., Kramer, M. F.: Effect of feeding on the protein synthesis in mammalian pancreas. Gastroenterology 57, 689–696 (1969)Google Scholar
  25. Rambourg, A., Chrétien, M.: L'appareil de Golgi: examen en microscopie électronique de coupes épaisses (0.5–1 μ), après impregnation des tissus par le tétroxyde d'osmium. C.R. Acad. Sci. (Paris) 270, 981–983 (1970)Google Scholar
  26. Revel, J. P., Hay, E. D.: An autoradiographic and electronmicroscopic study of collagen synthesis in differentiating cartilage. Z. Zellforsch. 61, 110–144 (1963)Google Scholar
  27. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–213 (1963)Google Scholar
  28. Richardson, K. C., Jarett, L., Finke, E. H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960)Google Scholar
  29. Rohr, H. P., Schmalbeck, J., Feldhege, A.: Elektronenmikroskopisch-autoradiographische Untersuchungen über die Eiweiß-Synthese in den Brunnerschen Drüsen der Maus. Z. Zellforsch. 80, 183–204 (1967)Google Scholar
  30. Ross, R., Benditt, E. P.: Wound healing and collagen formation. V. Quantitative electron microscope radioautographic observations of proline-H3 utilization by fibroblasts. J. Cell Biol. 27, 83–106 (1965)Google Scholar
  31. Shin, W. Y., Ma, M., Quintana, N., Novikoff, A. B.: Organelle interrelations within rat thyroid epithelial cells. 7th Int. Congr. Electr. Micr. (Grenoble) III, 79, 80 (1970)Google Scholar
  32. Stein, O., Stein, Y.: Lipid synthesis, intracellular transport and secretion. II. Electron microscopic radioautographic study of the mouse lactating mammary gland. J. Cell Biol. 34, 251–263 (1967)Google Scholar
  33. Tigyi, A., Montskó, T., Komáromy, L., Lissák, K.: Electron microscopic studies of the pancreatic acinar cell organelles in various functional conditions. Acta physiol. Acad. Sci. hung. 32, 19–24 (1967)Google Scholar
  34. Tougard, C., Kerdelhue, B., Tixier-Vidal, A., Jutisz, M.: Light and electron microscope localization of binding sites of antibodies against ovine luteinizing hormone and its two subunits in rat adenohypophysis using peroxidase-labelled antibody technique. J. Cell Biol. 58, 503–521 (1973)Google Scholar
  35. Venrooij, W. J. van, Poort, C.: Rate of protein synthesis and polyribosome formation in the frog pancreas after fasting and feeding. Biochim. biophys. Acta (Amst.) 247, 468–470 (1971)Google Scholar
  36. Venrooij, W. J. van, Poort, C., Geuze, J. J.: The effects of fasting and feeding on the protein synthesis rate and polyribosomal profile of frog pepsinogenic cells. J. Cell Sci. 12 903–909 (1973)Google Scholar
  37. Vrensen, G. F. J. M.: Some new aspects of efficiency of electron microscopic autoradiography with tritium. J. Histochem. Cytochem. 18, 278–290 (1970)Google Scholar
  38. Warshawsky, H., Haddad, A., Gonçalves, R. P., Valeri, V., De Lucca, F. L.: Fine structure of the venom gland epithelium of the South American rattlesnake and radioautographic studies of protein formation by the secretory cells. Amer. J. Anat. 138, 79–120 (1973)Google Scholar
  39. Weinstock, M., Leblond, C. P.: Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after 3H proline administration. J. Cell Biol. 60, 92–127 (1974)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. W. Slot
    • 1
  • J. J. Geuze
    • 1
  • C. Poort
    • 2
  1. 1.Centre for Electron Microscopy, Medical FacultyState UniversityUtrechtThe Netherlands
  2. 2.Department of Histology and Cell Biology Medical FacultyState UniversityUtrechtThe Netherlands

Personalised recommendations